
Operating Systems: Assignment Two.

By Thomas Adam

17th January 2005

1

Contents

Question 1 3

Question 2 5
First Come, First Served (FCFS) . 5
Shortest Seek Time First (SSTF) . 5
SCAN . 5
LOOK . 6
Circular Scan (C-SCAN) . 6
Circular Look (C-LOOK) . 6

Question 3 7

Question 4 9

Bibliography 10

2

Question 1

DMA is an acronym for Direct Memory Access. Traditionally, when a device wanted
to transfer data to and from memory (typically a hard-drive) it was the job of the
CPU to do it. But this was extremely ine�cient since it meant that the CPU was
occupied entirely with handling that, and thus was unable to do anything else.

Bus mastering DMA is a means by which devices can transfer information directly
to and from memory, by-passing the CPU completely1. This helped speed up the
transfer from peripheral devices such as hard drives and graphics cards, by allowing
the CPU to be doing other things, rather than handling the actual transfer2. The
concept works like this: the master is the device which drives the bus. This also
implies that the device perform the I/O (input and output of data) is capable of
performing much more complex operations. This makes sense, when you consider
that it is operating without communicating with the CPU. As a result, often these
device have a built-in microcontroller, or even their own CPU3.

But as with anything in the technology industry some standards were more popular
than others. Bus mastering DMA never really got used properly as it was hoped it
might. The operating system support was either �aky or non-existent, with more
often than not, buggy drivers4. Also, the support for it was dependant on certain
types of motherboards, although this was not much of a problem as they were the
de facto used in the PCs at the time. Yet dispite that, it was widely used, and with
success. Especially when UDMA (Ultra Direct Memory Access) was used.

UDMA is an extension of DMA. Aside from general improvements, the main ad-
vantage of UDMA is the fact that it can handle large transfer rates along the bus. It
was always a well known contention of DMA that the data transfer rate was slow5.
UDMA came into its own when working with hard drives along the IDE interface. As
technology improved, there was a demand that the data rate increased along with it.

There were a lot of additional features behind the scenes with the UDMA im-
plementation. One of which was the use of a CRC (cyclic redundancy check). The
concept of adding this in to the data transfer was an innovative idea. Because of the
addition of CRC, this meant the data could be checked for errors. This was done
for two reasons. One was to ensure the integrity of the data, and the other was to
compensate for redundant data that is usually sent with each block of data. Of course
where any errors were indicated, the block of data is resent.

UDMA de�nes relative modes of operation. As mentioned, the increase gain in
newer hardware meant that the data rate o�ered by the hard drive had to be sup-
ported. Table16 shows typically the modes and the amount of data that can be formed
in a single I/O operation at any one time.

1The term completely is slightly erroneous. It only appears as such � but the CPU is still used to
negotiate the �ow of the information to and from memory. Its input is removed from acting as the
middle man. Also, the CPU still has to be noti�ed when the operation has been successful.

2http://en.wikipedia.org/wiki/Bus_mastering
3ibid
4http://www.pcguide.com/ref/hdd/if/ide/modes_DMA.htm
5That's relative to the technology at the time. Back then, it was considered to be fast.
6http://kerneltrap.org/node/422?PHPSESSID=55ddf431bcdf5e299d2b7aa5893d381b

3

UDMA Mode Maximum Transfer Rate (MB/s)
Mode 0 16.7
Mode 1 25.0
Mode 2 33.3
Mode 3 44.4
Mode 4 66.7
Mode 5 100.0

Table 1: UDMA and maximum transfer rates.

Security with UDMA is only a theoretical concern. The data, when it is travelling
down the bus, is in binary form. There is always a possibility that if the bus became
overloaded, that the data could somehow �leak� and become available via the device
transferring the data. But this presupposes that there was a means to do that. UDMA
has techniques in place to prevent that � if the data is corrupted it is resent, and if the
data is being sent too quickly, then the bus is told to reduce its speed accordingly7.

Of course, that's just down the bus. If the I/O leak occured when the data was
being mapped into memory, then there could be a problem, even more so if it were
in the virtual memory area. Data is only ever recognisable if it is stored in a format
that can be translated. In the VM, the paged data is stored in the swap�le which is
in a structured order. If this data were not swapped back to the I/O device (for some
reason), it would remain there inde�nitely for someone to use (or until the page was
reaped by whatever means the OS happens to use).

So whether security is a concern with regards to UDMA is questionable. I'd say
at best that as UDMA performance increases, it might become necessary to consider
it if the amount of swapping between the device and memory is great enough.

7Depending on the UDMA mode, this could e�ectively mean to reduce back to DMA.

4

Question 2

As with (U)DMA earlier, I/O operations are performed on hard drives. When data
is sent to the drive there is a means by which the data is written to it. How that
is determined depends on the policy used to schedule the way the disk writes its
data. There are a number of ways of doing this, but mostly there are six main types
employed on IDE drives.

First Come, First Served (FCFS)

In this scheduling policy, the disk processes the data it receives (I/O requests) in
the order that it receives it in. With each request, the disk head is having to move
backwards and forwards across the disk with each read and write. This has the
advantage that the data is written to the disk immediately as it is received, and
further de�nes the order of how data is to be written to disk. If the amount of data
the disk is scheduled to commit is too large, then queues are used to bu�er the data.
Of course, main advantage of using FCFS is that there is no starvation. Because each
request is handled as and when it is received, there is never (or highly unlikely) the
probability that the data will not be written to the disk8.

The disadvantage in using this method is that there is no reordering of the work
queue. This means that if something goes wrong with the bu�ering of the data, then
the whole lot is lost. But also, there is performance to consider. If the disk is receiving
I/O requests without any ordering, then this is ine�cient, as it could mean that there
is short and long gaps in the way the data is processed (meaning the disk head is
continually having to move over the disk).

Shortest Seek Time First (SSTF)

This technique improves upon FCFS, and in many respects is similar to it. Unlike
FCFS, SSTF works by servicing requests to the disk which are adjacent to its cur-
rent position. This has the advantage that data can be serviced quickly. There is
data reordering of the bu�er so that data to the disk can be serviced adjacent to its
postition. This reduces seek time on the disk.

The two main disadvantages of this is that starvation can occur. It's perfectly
possible that when the disk is serving several requests that it stays in one particular
area. If this happens over a period of time, a request to another area is ignored.

SCAN

Using this method, the drive head continually moves backwards and forwards over the
disk. The scan starts from the outside working in. As a request is received, the data
is written to it, only when the head is moving in the correct direction. This has the
advantage that there is no starvation as the whole of the disk is accessed, regardless.
The disadvantage of it, is that the perfomance to the drive is reduced.

8�Advanced Unix: A programmer's Guide�, Prata, S., SAMS, 1971

5

LOOK

This is very similar to SCAN but the head of the disk stops in the direction it is
travelling when there is no more data in that given direction. This has the added
advantage that disk seeking is reduced.

Circular Scan (C-SCAN)

This is very similar in operation to SCAN, but the head moves back and forth across
a cylinder9. The request is only satis�ed when the head of the drive is sweeping
outwards to the other-end of the cylinder. When the head moves back inwards, no
requests of I/O are performed, even if some are waiting. This reduces starvation, but
the disadvantage is that it is slow.

Circular Look (C-LOOK)

Similar to C-SCAN, this also uses a method like LOOK whereby the head of the drive
only sati�es requests in a given direction. But unlike C-SCAN, the boundaries are
not de�ned, and so it is possible for a C-LOOK to beyond the cylinder limit is is
processing if the request means it can come back across to its origin.

As to which method I would employ, I would not use a method which is prone to
starvation. Since operating systems are becoming more advanced, and the need to
store data quickly increases, using a method prone to starvation is not something I'd
recommend. This rules out using SSTF since out of all of the methods described, this
is prone to starvation the most.

It could be argued that this is the perfect disk scheduling method to use though in
situations such as embedded applications where the emphasis is not so much on the
number of processes running10 but on e�ciency. Since the ordering of the bu�er takes
place relative to where the disk head is at that moment, for an embedded system with
limited processes this would certainly be a consideration.

However, for an actual operating system in use daily, other considerations have
to be used. Under Unix-like operating systems the drives are split up into logical
partitions. These are e�ectively sections of a disk that are reserved for an area of
operation. In such instances, a C-LOOK scan would be ideal, where the disk is usually
concentrated in one area, but not always. And unlike the boundary limitations that
C-SCAN has, this not applicable to C-LOOK. Moreover, of course, is the fact that
starvation has been addressed by using this disk scheduling policy � and although
it might appear to be the case, on ever multi-user operating system, I/O to a drive
is essential to almost any process that is running. Therefore, starvation cannot be
allowed to happen.

9A cylinder is a set area of a disk.
10In embedded systems, this is not a concern as such, since they concentrate on smaller tasks.

6

Question 3

With the progression of the lastest stable release of the Linux kernel going from
version 2.4.X to 2.6.X, there have been many improvements, both in terms of hardware
support, and internal architectural support. One such feature has been the addition
(and �rst implementation) of NPTL (Native Posix Threading Library).

A thread, in computer terms is very similar to a process, except that a thread
often is stateful and does one task in paralell with another to achieve a set goal.
In Linux systems11, this is achieved through the use of threads because of the way
the kernel operates in relation to the operating systems. The kernel is monolithic in
nature, which means that it is esssentially one big program12 which runs in its own
protected environment. The way it communicates with other processes is in an area
known as user-land. This area is what the user is able to control in terms of starting
and stopping programs, etc.

In the 2.4 kernel, the threads that applications created (as a result of the clone()
function) were managed by the threading manager. It was the job of the threading
manager to context switch betweeen each threads, given an appropriate timeslice.
Indeed, while there is nothing wrong with that, the problem that the 2.4 kernels had
was that in addition to the context switch that took place, regardless of whether the
thread had been looked at before or not, any data structures associated with that
thread had to be reloaded into memory13. This is an extremely slow and ine�ecient
means to deal with threads. Of course, the knock-on e�ect this had was that there
was an e�ective saturation limit between the number of threads that could start, and
the amount of memory allocated to handle them.

There were also a number of other issues associated with this implementation.
Under Linux, there is a virtual directory called /proc which details the state of the
kernel, the hardware, and processes which are running at any one time. Because of
the way the threads were handled these threads were being reported as processes,
which is incorrect. Information obtainable in this way (to the user of the system) is
both pointless and unnecessary14.

To combat this, and to try and standardise the failing problems inherent in the
2.4 kernel, the 2.6 kernel saw the introduction of NPTL. This speci�cation rewrote
how the threads were managed, speci�cally with regards to the concerns already
mentioned. The biggest change was the use of pthread() which e�ectively made the
context-switching of threads a lot faster by caching data structures15.

In terms of how this has helped developers, it has meant that the use of threads can
really be a viable alternative to having to shift some application logic of the kernel to
userland. This reduces a number of security concerns, since by not having some of the
code in userland, they're not susceptible to SIGKILL16 or SIGTERM17. Furthermore,
threads in the 2.6 kernel have allowed developers to not have to worry about dynamic

11Note that we cannot say �Unix� here (or BSD for that matter) since NPTL is an addition to the
Linux kernel only.

12While the technique of using modules dispells this, it is only relative to use the term monolithic
when comparing it to other kernel types such as a microkernel.

13http://people.redhat.com/drepper/nptl-design.pdf
14Ibid.
15http://kerneltrap.org/node/422?PHPSESSID=55ddf431bcdf5e299d2b7aa5893d381b
16�man 7 signal� � UNIX man page.
17Ibid.

7

structures. The fact that the data structure is available at each context switch, means
that more threads can be spawned where necessary without the overhead of having
to slow the memory usage down.

The use of modules (in terms of hardware accessible code) has meant that now
these are on-demand loaded, unlike 2.4 kernels that required the modules to be loaded
whether the device in question was in use or not. This operation is controllable via
threading.

In a general sense, the impact this has had on developers is no more so than what
was present in 2.4. Most of the changes have generally been behind the scenes stan-
dardisations, without which, the threading scheme in 2.6 would never have worked.
Although a test18 has shown that in 2.6, the creation of 100,000 threads took a little
over two seconds.

18http://kerneltrap.org/node/422?PHPSESSID=55ddf431bcdf5e299d2b7aa5893d381b

8

Question 4

Fast User Switching19 allows multiple users on a machine to exist so that di�erent
users can leave the running state of their applications open, safe in the knowledge
that they will be safe when the user returns. Fast user switching is considered an
extension of session management, where the application's state is never saved on exit,
because the programs are left in situ, running.

Mac OS X uses the same concept, although variations of it exist for Windows 2000
upwards. For fast user switching to work, there must have to be a lot of spare system
resources necessary to support a number of users that would have open applications
running.

Applications, even in their idle state, use up memory where pages have been
allocated. Since the application is still running, these pages are never freed, and so
a considerable amount of resources in terms of memory is used. As a developer (and
where it were a possibility that fast user switching was being used) there are a number
of things that could be done to try and avoid doing that. Certain swap partitions
allow for state to be saved to disk in a manner the application can then use when
an an operation is performed on it20. If this could be utilised when the applications
are used in fast user switching, this would allow for an application to suspend its
operation until such time it needed to be resumed.

Memory management of the application is a concern. Since fast user switching is
subject to multiple users, the only memory that can be used is global to all of them.
If a poorly written program were to leak memory while in this idle state, this could
a�ect not only the running application (and the user environment it is contained in),
but also a�ect the state of the other programs. Although this is only a concern of the
operating system, the means by which a memory-leaked program is dealt with should
be considered. Since Mac OS X uses a Unix-like model it is likely that some form of
the OOM-Killer21 might be used. In that case, as a developer, it would be necessary
that the application in question had some means of saving recovery data for fear of
the program being killed.

Security is another issue. In any multi-user environment there should be a mech-
anism in place to prevent others users from accessing other people's work. Mac OS
X uses a Unix-like model of security. By that, it is clear that the operating system
will predominately de�ne this, and so it is not really an application-speci�c feature to
worry about. However, it might be useful to password protect running applications,
based on a timeout delay.

Shared resources (and �les) is something else to consider. In situations where
access needs to be granted to more than one user to a �le, then there should be as a
means to do this. This is linked closely with security though, as this presupposes that
the set permissions have already been set by the administrator. There are dangers
in doing so, and as a developer, it would be wise to address the possibility of bu�er
overloads, where data is shared � since if data could be leaked in a state when the
user was not at the computer, this would be a potential risk.

19http://www.apple.com/macosx/features/fastuserswitching/
20This is synonymous with page referencing, but for this to work the application must support

such a feature.
21http://www.rossfell.co.uk/~rickp/oom/

9

Bibliography

The following references were used throught this text:

Websites

http://en.wikipedia.org/wiki/Bus_mastering
http://www.pcguide.com/ref/hdd/if/ide/modes_DMA.htm
http://www.apple.com/macosx/features/fastuserswitching/
http://rossfell.co.uk/~rickp/oom/
http://people.redhat.com/drepper/nptl-design.pdf
http://kerneltrap.org/node/422?PHPSESSID=55ddf431bcdf5e299d2b7aa5893d381b

Books

�Advanced Unix: A programmer's Guide�, Prata, S., SAMS, 1971
�man 7 signals� � a Unix man page.

10

