
Welcome to Linux

➲ Welcome

➲ Survey Of Class

➲ Logging in

➲ What is a shell?

➲ Using a shell

➲ How to use a command line

Welcome

➲ Instructor: Tom Duffy

➲ CA: Hendra Wijaya

➲ Course Materials
➲ Course Outline

➲ Chapter 3, Linux Tutorial

➲ VI Tutorial

➲ "In The Beginning Was The Command Line"

➲ "The Cathedral And The Bazaar"

Welcome (cont.)

➲ Class should be interactive

➲ Ask Questions at any time

➲ Let me know if I am going too fast or too slow
➲ One topic required for next topic, so it is really

important for every one to keep up

➲ 15 minute break in the middle of class

Survey Of Class

➲ Computer Experience (show of hands)
➲ Windows/Mac GUI (I assume all have good to

excellent experience)

➲ Inside a computer (Harddrive, CPU, memory, etc.)

➲ Command Line Experience (DOS?)

➲ UNIX or Linux Experience

Logging In

➲ Multitasking, Multiuser operating system
➲ Can run many programs at once

➲ Many people can be on same machine at same time

➲ Unlike DOS, where only one person can run one
program at one time

➲ Windows NT can run multiple programs at same time,
but only one person can be logged in

Logging In (part 2)

➲ Each user on a system has a login name
➲ Normally between 2 and 8 characters

➲ Each login name has a password
➲ Only the user should know their password

➲ Normally should be something hard to guess

➲ Please press [Ctrl]-[Alt]-[F1]

Logging In (part 3)

➲ Each machine has a hostname

➲ You should see a screen with

 hostname login:

➲ Here, the login name is "student" and the
password is "student"

➲ When you enter your password, nothing will
echo on the screen (so an on looker will not see
your password)

Superuser account

➲ Normally, you login as a regular user

➲ Regular users are restricted on the computer as to
what they can do

➲ Cannot add/delete accounts

➲ Cannot modify system settings

➲ Can only read and modify their own files and settings

Superuser account (part 2)

➲ Superuser account is called "root"

➲ Similar to "Administrator" on Windows NT

➲ "root" has privilege to do anything on the system
➲ Modify system settings

➲ Add/Delete user accounts

➲ Read/Write anyone's files

Virtual Consoles

➲ Console is a monitor and keyboard

➲ Normally, there is one login on the console

➲ Linux provides multiple login's using "virtual
consoles"

➲ We have 6 virtual consoles, but you can have
more

➲ Press [Alt]-[F2] to get to another console

➲ You can login again...press [Alt]-[F1] to return

What is a shell?

➲ The shell is the command line
➲ Similar to COMMAND.COM in DOS

➲ A small program that allows you to interact with
the operating system

➲ The system will start a shell automatically when
you log in

➲ When you log in, you get a shell prompt

 [student@hostname student]$ _

What is a command?

➲ A command consists of two parts
➲ Name of the command

➲ Its arguments

➲ First item on command line is the command; the
remainder are its arguments

[student@hostname stdudent]$ cp foo bar

➲ cp is the name of the command

➲ foo and bar are the arguments

Different types of commands

➲ Shell builtins
➲ Commands that the shell itself knows how to do

➲ Aliases
➲ User defined commands (normally a substitute name

for another command)

➲ Programs on the hard drive

➲ When you type a command, it looks for all three
of these

Types of commands (cont.)

➲ If the shell finds a builtin, an alias, or a program
on disk

➲ The shell starts that command and tells the command
the arguments on the command line

[student@hostname student]$ cp foo bar

➲ Shell starts cp and passes foo and bar to it

➲ cp is a program that coppies a file to another file

➲ cp will copy file foo to a new file bar

Example commands

[student@hostname student]$ eat dirt

bash: eat: command not found

[student@hostname student]$ make love

make: *** No way to make target `love'. Stop.

Logging out

➲ To log out simply type "exit"

➲ When you are done using a Linux system,
always log out

[student@hostname student]$ exit

➲ Log back in using login name "student" and
password "student"

Changing your password

➲ You should change your password when you get
an account on a system to something that is hard
for someone else to guess

➲ Use numbers and symbols

➲ Avoid dictionary words
[student@hostname student]$ passwd <- Note the spelling
Changing password for tduffy
(current) UNIX password:
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully

Change password back

➲ It won't let us change to student as normal user
➲ "student" is a dictionary word

➲ Must login a root
hostname login: root

Password: sfsuitp

[root@hostname root]# passwd student
Changing password for user student
New UNIX password: student
Retype new UNIX password: student
[root@hostname root]# exit

Files

➲ A file is a collection of data or information that
sits on your computer (normally on a hard disk or
floppy disk)

➲ You access this file by using its filename

➲ Different types of files include:
➲ History term paper

➲ Email message

➲ A program that you run

Directories

➲ A directory is a collection of files and other
directories

➲ Directories have names like files

➲ Directories are organized in a "tree" structure
➲ directories contain sub-directories

Files and Directories (cont.)

➲ To refer to a file or directory, you call it by its
path name

➲ A path name is a list of directories and sub-
directories to map where your file is

➲ Each directory is separated by a forward slash (/)
➲ Different from windows's back slash (\)

papers/english-lit
➲ Papers is a directory containing english-lit

Files and Directories (cont.)

papers/notes/cheat-sheet

➲ The directory "papers" contains another directory
"notes" which contains a file "cheat-sheet"

➲ The directory that contains a sub-directory is
called a parent directory

➲ "papers" is the parent directory of "notes"

The directory tree

➲ The filesystem on Linux contains a standard
directory tree

➲ The parent directory of all directories is called
the root directory (not to be confused with the
superuser "root")

➲ The root directory is refered to with a single
forward slash (/)

Home directories

➲ Each user on a system has a home directory

➲ Normally, this is in /home/username, where
username is the login name of the user

➲ So, our user "student" has their home directory in
/home/student

➲ "home" is a sub-directory of the root directory
and "student" is a sub-directory of the "home"
directory

Typical Linux directory tree

/ - bin

 - dev

 - etc

 - home - student

 \- larry

 - usr - local - bin

 \- bin

Current working directory

➲ At any given moment, you are in one directory

➲ This directory is called your current working
directory

➲ When you login, Linux starts you in your home
directory

➲ When you run programs and reference files, they
are in relationship to you current working
directory

CWD (cont.)

➲ Example:
➲ We need to create a file to play with
[student@hosname student]$ cp /etc/printcap /home/student
➲ The "more" command simply displays a file to

the screen
[student@hosname student]$ more /home/student/printcap
[student@hosname student]$ more printcap
➲ In the first example, we refer to the file using the

absolute path name (starts with root dir, /)
➲ In the second example, we use the relative path

name (based on the current working directory)

Referring to home directories

➲ There is a shortcut to refer to your home
directory

➲ You can use the character ~ to refer to your home
directory instead of typing out the absolute path
name

[student@hosname student]$ more ~/printcap

[student@hosname student]$ more /home/student/printcap

➲ Are the same

Linux is case sensative

➲ All files, programs, directories, etc. on Linux are
case sensative

➲ Lower case and Upper case characters are
different

➲ "make", "Make", and "MAKE" are all different
names

➲ Most of the time, Linux uses lower case

Moving around

➲ To change your current working directory, use
the command "cd" which means change
directory

➲ The argument to "cd" is the directory to change
to

[student@hosname student]$ cd /etc

➲ Will change your current working directory to
the "etc" directory which is a sub-directory of the
root directory

Special directories

➲ There are two special directories
➲ .. refers to the parent directory of your current

working directory

➲ . refers to your current working directory

[student@hosname etc]$ cd ..

[student@hosname /]$

➲ Now, we are in the root directory

➲ Notice how the prompt changes to reflect the
current working directory

Looking in a directory

➲ To see the contents of a directory, use the "ls"
command for list

[student@hostname /]$ ls

bin core etc initrd misc mp3 proc sbin tmp var

boot dev home lib mnt opt root tftpboot usr

➲ You will see all the directories and files in that
directory

Giving options to commands

➲ Most commands can be changed from their
default behaviour by giving them options

➲ Using a "-" in front of a letter is how you pass an
option to a command

[student@hosname /]$ ls -l

➲ Will change the bahaviour of ls to list the entries
in their "long" format

Looking at files (cont.)

➲ ls can also be told to look at a directory that is
not your current working directory

[student@hosname /]$ ls /home/student

➲ Will list the contents on your home directory

Creating new directories

➲ Using the "mkdir" command, you can create new
directories

➲ Lets first move back into our home directory

[student@hosname /]$ cd /home/student

➲ Now, we can create a directory called "foo"

[student@hostname student]$ mkdir foo

[student@hostname student]$ ls

➲ Should show a new directory in the list name foo

Copying files

➲ You can copy files using the "cp" command

[student@hostname student]$ cd foo

[student@hostname foo]$ ls

[student@hostname foo]$ cp /etc/termcap .

[student@hostname foo]$ cp /etc/printcap .

[student@hostname foo]$ ls

printcap termcap

Moving files

➲ To move files (or rename them), use the "mv"
command

➲ If the second argument is a directory, it will
move the file

➲ If the second argument is a file (or non-existant),
it will rename the file

[student@hostname foo]$ mv termcap bar

➲ An "ls" should show a termcap is now bar

Deleting files

➲ To delete a file, use the "rm" command for
remove

[student@hostname foo]$ rm bar

➲ When you ls, bar is no longer there

➲ Note that when you delete a file on Linux, it is
gone. FOREVER.

➲ There is no trash can or recycle bin. The file is
toast. BE CAREFUL :)

Removing a directory

➲ The "rmdir" command will remove a directory

➲ The directory must be empty before Linux will
allow you to remove it

➲ So, you must rm every file and rmdir ever sub-
directory before rmdir'ing a directory

Looking at files

➲ As metioned earlier, you can look at files using
the "more" command

➲ [Space] will go to the next page

➲ [b] will go back a page

➲ [q] will quit it

➲ "cat" also allows you to look at files, but it will
not look at them one at a time -- the whole file
will all scroll really quickly past the screen

Getting help

➲ To get help on a given command, you can use the
command "man" for manual

➲ To get help on the ls command, I would type

[student@hostname student]$ man ls

➲ And I could read about how ls worked, what
options I could give it, etc.

Types of shells

➲ Linux has many different types of shells, but
there are some standard ones

➲ Normally, "bash" is the default shell on Linux

➲ But, you can use "sh", "csh", "tcsh", "zsh", "ksh"

➲ Each shell has slightly different command line
semantics

History of shells

➲ sh -came first. Called the Bourne shell cause it was written by S.
R. Bourne. Not very friendly for interactive use.

➲ csh -came from UCB. Known as the C Shell. Added aliasing and
job control. Not very good at scripting.

➲ tcsh -added command line editing and TENEX-style completion
to C shell

➲ ksh -David Korn from AT&T decided to use the language of
Bourne shell w/ the added features of tcsh (but it wasn't free)

➲ bash -Bourn again shell. Same idea as ksh using Bourne shell
language and C friendly interactivity. (but FREE)

➲ zsh -written by Paul Falstad while he was a student a Princeton.
The kitchen sink of shells. Has creeping featurism.

Exploring the filesystem

➲ /bin - short for binaries. Location of essential system programs

➲ /dev - device files. Location of special files that correspond to hardware
in your computer.

➲ /etc - system configuration files

➲ /sbin - static binaries. essential tools for system administration

➲ /home - location of users home directories

➲ /lib - essential system shared libraries. Libraries contain code that many
programs use.

➲ /proc - process filesystem. This contains "virtual" files that allow you to
look at the state of processes running on your system as well as memory
and cpu information.

Filesystem (cont.)

➲ /tmp - location of temporary files. These get deleted every
time you reboot.

➲ /usr - location of most of the programs and libraries on your
system.

➲ /opt - optional programs installed by third party software
vendors

➲ /var - area for variable size files like system logs, print
queues, mail spools. Files that tend to grow or change often
are put here.

Wildcards

➲ Allows you to specify many files without having
to type all their names

➲ "*" refers to any number of characters or letters
(including no characters)

Wildcards (cont.)

[student@hostname student]$ touch frog

[student@hostname student]$ touch joe

[student@hostname student]$ touch stuff

[student@hostname student]$ ls

frog joe stuff

[student@hostname student]$ ls *o*

from joe

➲ Notice that only files with an "o" in it are listed

Wildcards (cont.)

➲ A "*" by itself will substitute all characters

[student@hostname student]$ ls *

frog joe stuff

[student@hostname student]$ ls f*

frog

[student@hostname student]$ ls *ff

stuff

[student@hostname student]$ ls *f*

frog stuff

Wildcards (cont.)

➲ When a "*" is substituted for letters and
characters, this is called wildcard expansion

➲ This is done before the arguments are passed to
the program (i.e. The shell takes care of it)

[student@hostname student]$ ls *o*

➲ the shell turns into

[student@hostname student]$ ls frog joe

Wildcards (cont.)

➲ The "?" wildcard is substituted for one letter or character

[student@hostname student]$ ls ?

➲ Will only show files that are one character long – we don't have
any right now

[student@hostname student]$ ls j?o

joe

[student@hostname student]$ ls f??g

frog

[student@hostname student]$ ls ????f

stuff

Using Wildcards (in the wild)

➲ You can use wildcards to copy (cp) or move
(mv) multiple files

[student@hostname student]$ cp /etc/s* ~

➲ Will copy all files starting with "s" to your home
directory (remember that ~ is a shortcut to your
home directory)

Hidden Files

➲ Linux "hides" files that start with a period (.)

➲ Wildcards do not show hidden files

➲ In order to see hidden files, you must present ls
with the -a option

[student@hostname student]$ ls -a

. .. frog joe stuff

Linux Plumbing

➲ Linux programs get their input from standard input
(stdin) and send their output to standard output (stdout)

➲ The shell automatically (by default) sets it up so that
standard input comes from your keyboard and startdard
output goes to your monitor

➲ "cat" reads from the files on the command line and
outputs to stdout

[student@hostname student]$ cat /etc/termcap

<output spews to screen>

Plumbing (cont.)

➲ If you don't specify a file to "cat", it will take input from stdin
(your keyboard)

[student@hostname student]$ cat

Hello there.

Hello there.

Bye.

Bye.

[Ctrl-D] quits

➲ Notice that it echo's each line you type. That is because it is
taking input from stdin (keyboard) and output to stdout (monitor)

Plumbing (cont.)

➲ The "sort" command takes input from stdin, sorts it in
alphabetical order, and sends the sorted list to stdout

[student@hostname student]$ sort

bananas

carrots

apples

[Ctrl-D]

apples

bananas

carrots

Redirecting Input and Output

➲ The shell allows you to redirect stdout to a file by using the “>”
directive

[student@hostname student]$ sort > shopping-list

bananas

carrots

apples

[Ctrl-D]

[student@hostname student]$ cat shopping-list

➲ Should see a sorted list of items now saved in file shopping-list

Redirected I/O (cont.)

[student@hostname student]$ cat > items

bananas

carrots

apples

[student@hostname student]$ sort items > shopping-list

[student@hostname student]$ cat shopping-list

apples

bananas

carrots

Redirecting Input

➲ We can also redirect input using the "<" directive

[student@hostname student]$ sort < items

apples

bananas

carrots

➲ "items" is sent as stdin to sort, but since stdout is not redirected, it
goes to the monitor

Filters

➲ A filter is a program that takes input from stdin,
processes it in some way, and sends the output to
stdout

➲ "sort" is a filter

Filter
Stdin Stdout

Using Pipes

➲ You can use these redirects for any command
line

➲ For instance, you can redirect ls to a file
[student@hostname student]$ ls > file-list

➲ All the files in the directory are now in a new file called file-list

[student@hostname student]$ sort -r file-list

➲ The "-r" option to sort will do a reverse sort

Pipes (cont.)

➲ In order to get the output of ls and run it through sort, we needed
to use a file in the process

➲ There is a shortcut using the "|" directive (this is a [shift]-[\]

[student@hostname student]$ ls | sort -r

➲ Will take the stdout of ls and put it into the stdin of sort

[student@hostname student]$ ls /usr/bin

➲ Will spew across the screen, so we can use the more command to
fix this

[student@hostname student]$ ls /usr/bin | more

Pipes (cont.)

➲ You can pipe as many commands together as you
want

[student@hostname student]$ ls | sort -r | head -1

➲ "head" is a command that takes the first -x lines and throws aways
the rest; "-1" says take the first 1 line and throw away the rest

Non-destructive output

➲ There is one more pipe worth mentioning

➲ You can append the output of a command to a
file using the ">>" directive

[student@hostname student]$ ls >> file-list

➲ Will stick another copy of the ls at the bottom of file-list

➲ REMEMBER: ">","<",">>", and "|" are features of the shell

File Permissions

➲ All files in Linux have file permissions
➲ Prevent unauthorized users from modifying system

settings

➲ Protect users files from other users on system

➲ Every file is "owned" by a user

➲ When "student" creates a file in their home
directory, it is owned by student

➲ By default, the permissions allow others to read
your file, but not edit or delete it

File Permissions (cont.)

➲ Not only is a file owned by a user, it is also
owned by a group

➲ A group is a set of users on a system

➲ Every user is placed into at least one group

➲ A user can be a member of many groups

➲ If there were a university system, there might be
four groups: student, staff, faculty, guest

File Permissions (cont.)

➲ There are three different types of permissions:
● read
● write
● execute

➲ There are three clases of users who can have
these permissions:

➲ the owner of the file

➲ a group to which the file belongs

➲ all users on the system regardless of their group.

File Permissions (cont.)

➲ Both files and directories have permissions
➲ Read permission allows

● A user to read the contents of a file
● List the contents of a directory

➲ Write permission allows

● A user to modify the contents of a file
● Create new files or delete files within a directory

➲ Execute permission allows

● A user to run the file as a program or shell script
● For directories, allows the user to cd into that directory

Understanding File Permssions

➲ Using the "ls" command with the "-l" option, we
can look at a files permissions

[student@hostname student]$ ls -l stuff

-rw-r--r--1 student student 505 Mar 13 19:05 stuff

➲ The first field is the file permssion array

➲ The third field is the owner of the file

➲ The fourth field is the group that owns the file

Understanding File Permssions
(cont.)

-rw-r--r--1 student student 505 Mar 13 19:05 stuff

➲ The "-rw-r--r--" is interpreted as follows

➲ The first character, "-" is the type of file. "-"
means regaral file, "d" means directory, etc.

➲ The next three characters are the owner's
permssions

➲ Then three characters are the group's
permissions

➲ The last three are everybody else's permissions

Understanding File Permssions
(cont.)

-rw-r--r--1 student student 505 Mar 13 19:05 stuff

➲ "r" stands for read permission

➲ "w" stands for write permission

➲ And "x" stands for execute permssion

➲ If a given owner, group, or everybody else does
not have permssion, the letter is substituted using
the "-" character

Understanding File Permssions
(cont.)

-rw-r--r--1 student student 505 Mar 13 19:05 stuff

➲ This file, the owner has read and write
permission ("rw-")

➲ The group only has read permission ("r--")

➲ And everybody else only has read permission
("r--"

➲ Nobody has execute ("x") permssion because this
file is not a program or shell script

Understanding File Permssions
(cont.)

-rwxr-xr-x

➲ Here, the owner has read, write, and execute permission whereas
both the group and everybody else has read and exectute, but does
not have write permission

-rw-------

➲ Here, only the user had read and write permission. Nobody
(except root) can access this file on the system

-rwxrwxrwx

➲ Here, everybody has read, write, and execute permission on this
file

Changing Permissions

➲ The command to change a file permission is
"chmod" for change mode

➲ chmod's first argument is a combination of these
three sets

➲ First character is a member of {a,u,g,o}

➲ Second is a member of {+,-}

➲ Third is a member of {r,w,x}

Changing Permissions

➲ The command to change a file permission is
"chmod" for change mode

➲ In the group {a,u,g,o}
➲ "a" stands for all threee of the ones below

➲ "u" stands for the owner (or user) of the file

➲ "g" stands for the group which owns the file

➲ "o" stands for everybody else

Changing Permissions

➲ The command to change a file permission is
"chmod" for change mode

➲ In the group {+,-}
➲ "+" means to give a permission

➲ "-" means to take a permission away

➲ In the group {r,w,x}
➲ "r" means read permission

➲ "w" means write permission

➲ "x" means execute permission

Changing Permissions

➲ The command to change a file permission is chmod for change
mode

➲ With a combination of the first group, second group and third
group, you can grant or revoke permissions. Examples:

chmod a+r - gives read access to the file

chmod +r - same as above, if no {a,u,g,o} specified, "a" is
assumed

chmod og-x - removes execute permission from other and group

chmod u+rwx - gives the owner read, write, and execute the file

chmod o-rwx - revokes read, write, and execute for others

File Links

➲ There are two types of file links
➲ Hard links

➲ Symbolic links

➲ Originally, hard links were the only type of link

Hard Links

➲ Every file on the system has a special number
associated with it (inode number)

➲ Each directory contains a list of inode numbers
that it contains

➲ A filename is a hard link to an inode number

Filename (foo)

Harddisk

Inode # (22192)

Hard Links (cont.)

➲ The "ln" command allows you the create a hard
link to an inode number

➲ A file can have multiple hard links pointing to it

Filename (foo)

Harddisk
Inode # (22192)

Filename2 (bar)

Hard Links (cont.)

[student@hostname student]$ ls -i

➲ Will give you a liting of the inode numbers associate with each
filename in the diretory

[student@hostname student]$ touch foo

[student@hostname student]$ ls -i foo

22192 foo

[student@hostname student]$ ln foo bar

[student@hostname student]$ ls -i foo bar

22192 bar 22192 foo

➲ Note that your inode numbers will be different

Hard Links (cont.)

➲ Now, accessing foo or bar will access the same
file on the hard drive

➲ If you modify foo, bar will change as well

➲ If you remove foo, bar will not get removed

Foo Harddisk

22192

Bar

Hard Links (cont.)

[student@hostname student]$ ls -l foo bar

➲ Now, look at the second item in the list. This is a count of the
number of hard links (or references) to the file

➲ "foo" and "bar" both have 2 references, whereas other files on the
system have only 1

Symbolic Links

➲ The second type of link is the symbolic link

➲ This is similar to the shortcut in Windows

➲ Often called a symlink

➲ Does not link by inode number

➲ Links to another filename

Filename (foo)

Harddisk

Inode # (22192)Filename2 (bar)

Symlinks (cont.)

➲ Use "ln -s" to create a symlink
[student@hostname student]$ ln -s foo bar

[student@hostname student]$ ls -i foo bar

22195 bar 22192 foo

[student@hostname student]$ ls -l foo bar

lrwxrwxrwx 1 student student 3 May 8 18:21 bar -> foo

-rw-r--r-- 1 student student 12 May 8 18:20 foo

➲ File permissions are not used on symlinks

➲ Notice the "l" in front indicating this is a symlink

Symlinks (cont.)

➲ If you delete the linked file, the symlink is
"broken"

➲ Now, "bar" is no longer valid

➲ "ls" will show "bar" blinking red

Filename (foo)

Harddisk

Inode # (22192)Filename2 (bar)

Linux automatically
deletes inodes with
no hardlink

Link Differences

➲ Hard links and Symbolic links are functionally
the same in many respects

➲ Differences include:
● Can create symlinks to files that don't exist
● Processed differently by the OS
● Symbolic links identify the file they point to
● No easy way to tell what hard links link to the same inode

number

Processes and Jobs

➲ When you run a command or program on Linux,
the running program is called a process

➲ To view the running processes, use the command
"ps"

[student@hostname student]$ ps

 PID TTY TIME CMD

13310 pts/4 00:00:00 bash

6680 pts/4 00:00:00 ps

Processes (cont.)

13310 pts/4 00:00:00 bash

➲ The first filed is the PID or process ID

➲ Unique number to identify the proccess in the
system

➲ The last field is the command that was run

➲ We only see the processes that student ran from
this shell

Processes (cont.)

[student@hostname student]$ ps -aux

➲ Will list all the processes running on the system

Job Control

➲ Every time you run a command in a shell, you
issue a job

➲ A job is a process that is run from a shell

➲ In order to manipulate these jobs, you need job
control

➲ Job control is a feature provided by the shell

➲ Allows you to switch between independent jobs

Job Control (cont.)

➲ Most of the time, you run one job at once

➲ With job control, you can run many things at
once from one shell

➲ Example:
● If you are editing a text file and want to run another

command, you can suspend the text editor, issue the
command, and come back without having to quit the editor

Job Control (cont.)

➲ A running job is either in the Foreground or
Background

➲ Only one job can be in the foreground at once

➲ The job in the foreground is the one that you
interact with
● Takes input from keyboard and puts output to screen
● Unless you have redirected input or output (remember pipes)

Job Control (cont.)

➲ Jobs in the background run without interaction
● No user intervention required
● Run for a long time

➲ A job can be suspended

➲ A suspended job is temporarily stopped

➲ You can resume a suspended job either in
foreground or the background

➲ To suspend a job, issue a [Ctrl-Z] while it is in
the foreground

Job Control (cont.)

➲ Instead of suspending a job, you can inturrupt it

➲ This will kill off the job

➲ Once killed, you cannot resume the job

➲ Use [Ctrl-C] to inturrupt a job

Job Control (cont.)

➲ Examples of job control

➲ The command "yes" simply prints "y" forever
until it is interrupted

[student@hostname student]$ yes

y

y

y

y

y

Job Control (cont.)

➲ Using [Ctrl-C], inturrupt "yes"

➲ Instead of seeing all the "y"s, let's redirected
standard output of "yes"

➲ There is a special file on the system called /
dev/null

➲ /dev/null is a "black hole"

➲ If you send output to /dev/null, it disappears

Job Control (cont.)

[student@hostname student]$ yes > /dev/null

➲ This redirects the "y"s to the black-hole. We
don't see any more on the screen

➲ "yes" is still running in the foreground

➲ [Ctrl-C] will kill it

Job Control (cont.)

➲ We can make a process run in the background by using the
special character "&"

[student@hostname student]$ yes > /dev/null &

[1] 164

➲ You are now returned to the shell

➲ The shell also prints out "[1] 164" or something similar

➲ The "164" refers to the process ID or PID

➲ The "[1]" refers the job number

● The shell asigns a job number to all running jobs

Job Control (cont.)

➲ The program "yes" is running in the background

➲ It is continuously sending a stream of "y"s to /
dev/null

➲ We can see the status of all our jobs by running
the command "jobs"

[student@hostname student]$ jobs

[1]+ Running yes > /dev/null &

➲ "ps" will also show it running

Job Control (cont.)

➲ To terminate the job, use the "kill" command

➲ "kill" takes either a process ID or a job number
as the first argument
● Use the "%" in front of the number to refer to a job number
● No "%" means PID

[student@hostname student]$ kill %1

➲ This will kill off job 1
[student@hostname student]$ jobs

[1]+ Terminated yes > /dev/null

Job Control (cont.)

➲ You could have used the PID
[student@hostname student]$ kill 164

➲ Which is the same as
[student@hostname student]$ kill %1

➲ Since they both refer to the same process

Stoping and Starting Jobs

➲ There is another way to put a job into the
background

➲ Once you start a process, suspend the job with
[Ctrl-Z]

[student@hostname student]$ yes > /dev/null

[Ctrl-Z]

[1]+ Stopped yes > /dev/null

Starting and Stopping Jobs (cont.)

➲ To bring the job back into the foreground, use
the "fg" command

➲ To put the job into the background, use the "bg"
command

[student@hostname student]$ fg

yes > /dev/null

[Ctrl-Z]

[student@hostname student]$ bg

[1]+ yes > /dev/null &

Starting and Stopping Jobs (cont.)

➲ You can use "jobs" to see it running in the
background

➲ If you want to stop the job again, you must bring
it back to the foreground

➲ Use the "fg" command to do that

➲ The shell will redisplay the name of the
command so you know which one you are
restarting

Starting and Stopping Jobs (cont.)

➲ Note: difference between a backgrounded job
and suspended job
● Background: still running using CPU time and memory
● Suspended: not running, not using CPU, not doing any work

➲ A job in the background can still try to display
output to screen

[student@hostname student]$ yes &

y

y

Starting and Stopping Jobs (cont.)

➲ You can't [Ctrl-C] because the job is in the
background

➲ In order to stop it, you must first bring to
foreground

➲ You will need to type even though stuff is
streaming past the screen

[student@hostname student]$ fg

[Ctrl-C]

Starting and Stopping Jobs (cont.)

➲ "fg" and "bg" only affect the last job that was
stopped

➲ When you type "jobs", the one with a "+" next to
it is the job that "fg" and "bg" will affect

➲ If you want to affect another job, you can use the
"%" <number> to address it

[student@hostname student]$ fg %s

➲ This will bring job 2 to the foreground

Job Control (final notes)

➲ Job control is a feature of the shell

➲ There are differences between bash and tcsh

➲ Some shells do not have job control

➲ The main one's on Linux do

The VI Editor

➲ VI is the main editor in UNIX and Linux
● VI stands for "visual editor"
● Available on all *NIX systems
● Not easy to use
● Not self-explanitory
● Many, many commands
● Have I sold you yet? :-)

➲ Linux uses an enhanced version of VI called
VIM (VI Improved)

VI (cont.)

➲ Normally to start, run "vi"

➲ Today, run "vimtutor" to start tutorial

➲ Read along in "VIM Tutor" handout

➲ h,j,k,l keys used to move around

➲ Alternatively, use the arrow keys (not in all vi's)

k

l

j

h

VI (cont.)

➲ VI is a modal editor
➲ While in a mode, VI can only do things allowed in

that mode

➲ At any given time, vi is in a mode
● Normal mode
● Insert mode
● Replace mode
● Last line mode

➲ Hit [Esc] to get to Normal mode

VI Modes

➲ Normal Mode
➲ Moving around the text

➲ Entering normal mode commands

➲ Issuing commands to get into other modes

➲ Insert Mode
➲ Can enter text into your document

➲ Replace Mode
➲ Overwrites text in your document

VI Modes (cont.)

➲ Last Line Mode
➲ Issue filesystem commands

● Save file
● Open file
● Instert file

➲ Quit VI

➲ Run commands to manipulate your text

VIM 1.2

➲ Quiting VI
➲ Make sure you are in Normal mode (hit [Esc])

➲ Enter the Last line mode by hitting ":"

➲ Notice that the cursor is now at the bottom of the
screen

➲ In last line, "q" [Enter] quits

➲ Use "q!" [Enter] to quit without saving

➲ OK, now type "vimtutor" again to get back in

VIM 1.3

➲ Delete a character under the cursor, type "x" in
Normal mode

➲ Move down to the line marked with the "--->"

➲ Fix up the sentence "The ccow jumpedd ovverr
thhe mooon."

VIM 1.4

➲ To enter Insert Mode, type "i"

➲ Once in Insert Mode, you must hit [Esc] to get
back to Normal Mode (to move around, etc.)

➲ Move down to the first line marked "--->"

➲ Correct the first sentence to match the second
---> There is text misng this .

---> There is some text missing from this line.

VIM 1.4 (cont.)

➲ Remember, you can always correct a mistake by
using the "x" command from Normal Mode

➲ Also, when in Insert Mode, you can erase the
inserts you just made by using the [Backspace]
key

VIM 2.1

➲ Make sure you are back in Normal Mode (hit
[Esc])

➲ The command "dw" will delete a word

➲ Move down the sentence and delete the words
that don't belong

➲ Must put cursor on the first letter of the word to
delete it properly

---> There are a some words fun that don't belong paper in this sentence.

VIM 2.2

➲ Make sure you are back in Normal Mode (hit
[Esc])

➲ The command "d$" will delete the rest of the line
to the end

➲ Move down the sentence and delete the double
ending.

➲ Must put cursor on the space (" ") to delete that
character as well as the rest of the line

---> Somebody typed the end of this line twice. end of this line twice.

VIM 2.3

➲ The "d" command followed by another character (object) will
delete something

➲ The something is determined by the second character (object)

● w – from cursor to end of word including space
● e – from cursor to end of word, NOT including space
● $ - from cursor to end of line

➲ SYNTAX: [number] d object OR d [number] object

➲ [number] will modify "d" to do it that many times

➲ [number] is optional, and will default to "1"

VIM 2.4

➲ There is an exception to the "d" rule

➲ "dd" will delete an entire line

➲ [number] d d will delete [number] of lines

➲ Edit the poem in the tutorial to delete the bogus lines

 1) Roses are red,

 2) Mud is fun,

 3) Violets are blue,

 4) I have a car,

 5) Clocks tell time,

 6) Sugar is sweet

 7) And so are you.

VIM 2.5

➲ To undo something you have just done
incorrectly, use the "u" command

➲ Use "x" to delete an unwanted character

➲ Now use "u" to undo it

➲ Now fix all the errors in this sentence
---> Fiix the errors oon thhis line and reeplace them witth undo.

➲ Now, use the command capital "U" to undo the
whole line

VIM 2.5 (cont.)

➲ Use lowercase "u" a few times to undo the "U"

➲ [Ctrl-R] will redo an undo

➲ Now, type [Ctrl-R] to redo the command

VIM 3.1

➲ Using the "p" command, you can Put or Paste the
last thing deleted

➲ Rearrange these lines into the correct order by
using "dd" to delete a line

➲ Then move the cursor and use "p" to put it back
in the correct place

 d) Can you learn too?

 b) Violets are blue,

 c) Intelligence is learned,

 a) Roses are red,

VIM 3.2

➲ Using the "r" command, vi will replace a
character under the cursor

➲ Move the cursor over the incorrect letters

➲ Then hit the "r" key followed by the correct letter

➲ Edit the first line to match the second line
---> Whan this lime was tuoed in, someone presswd some wrojg keys!

---> When this line was typed in, someone pressed some wrong keys!

VIM 3.3

➲ Using the "cw" command, we can correct entire words

➲ Place the cursor in the "u" in "lubw"

➲ Use "cw" to correct work and type "ine"

➲ Hit [Esc] and move onto the next work until the
sentences match

---> This lubw has a few wptfd that mrrf changing usf the change command.

---> This line has a few words that need changing using the change command.

➲ "cw" will not only replace a word, but it puts you in
Insert Mode

VIM 3.4

➲ The "c" command has similar syntax to the "d"
command

➲ SYNTAX: [number] c object OR c [number] object

➲ Objects:

● w (word)
● $ (end of line)

➲ Fix the following by "correcting" the rest of the first line
 with the second using "c$"

---> The end of this line needs some help to make it like the second.

---> The end of this line needs to be corrected using the c$ command.

VIM 4.1

➲ [Ctrl-G] will print print out the filename you are
editing and the line number you are currently at

"/tmp/tutorZrieCm" [Modified] line 392 of 785 --49%-- col 15-29

➲ Remember your line number

➲ [Shift-G] will bring you to the end of the file

➲ Now, type in the line number and then hit [Shift-
G] (NOTE: line number will NOT appear)

➲ This will bring you to your line number

VIM 4.2

➲ Using the "/" command, we can search the document

➲ A "/" should appear at the bottom of the screen like Last
Line Mode

➲ Type "errroor" to search for this word (followed by [Enter])

➲ To repeat the search, use the "n" command

➲ To search backwards, use the "N" command

➲ If you want a backward search from the beginning, use the
"?" instead of the "/" command

➲ Note that when search reaches end, it will continue at top

VIM 4.3

➲ Using the "%" command, vi will match
parentheses (, [, or {

➲ Place the cursor over either the open or close
parentheses in the following sentence

➲ Hit the "%" to see the cursor move to the
opposite one

---> This (is a test line with ('s, ['s] and {'s } in it.))

➲ This is used extensively in programming

VIM 4.4

➲ Using a Last Line mode command, we can perform a search
and replace

➲ Type ":s/old/new/g" to substitute "old" for "new" in a line

➲ Move down to the line and type ":s/thee/the" to replace the
first occurance of "thee" with "the"

➲ Now, type ":s/thee/the/g" to substitute all occurances of
"thee" with "the" on that line

---> thee best time to see thee flowers is in thee spring.

VIM 4.4 (cont.)

➲ Advanced Search and Replace

➲ :#,#s/old/new/g -- will replace all the
occurances of old with new between the two
line numbers represented by "#"

➲ :%s/old/new/g – will replace all the occurances
of old with new in the whole file

➲ :%s/old/new/gc – will replace all the
occurances of old with new in the whole file
asking your for confirmation before each sub.

VIM 5.1

➲ To run a command from within vi, enter the Last
Line Mode by typing ":"

➲ Then type "!" followed by a shell command

➲ Type ":!ls[Enter]" to run "ls"

➲ The output will come to your screen and you can
hit [Enter] to get back to your vi session

VIM 5.2

➲ To save a file, enter the Last Line Mode by
hitting ":"

➲ Then type "w FILENAME [Enter]" (note the
space in between w and FILENAME)

➲ Make sure the file does not already exist before
doing this

➲ Type ":w TEST[Enter]"

➲ This saves the tutor file under a new file TEST

VIM 5.3

➲ You can save part of file instead of a whole file in vi

➲ Move to a line and type [Ctrl-G] to see that line number

➲ Now move to a line below and hit [Ctrl-G] as well

➲ Remember both these numbers

➲ Now to save the file from the first line to the second line,
type ":#,# w TEST2" where #,# is the first number followed
by the second number

VIM 5.4

➲ To merge another file into your current file, you
can use the "r" command from the Last Line
Mode

➲ Type ":r TEST2" to insert the file TEST2 into
your file

➲ Note the space between the "r" and "TEST2" in
the Last Line command

VIM 6.1

➲ You can use the "o" command to open a new line below
in Insert Mode

➲ Make sure to hit [Esc] to be in Normal Mode

➲ Move the cursor to the line marked with the "--->"

➲ Hit "o" and copy the line. Hit [Esc] when done to put
back into Normal Mode

---> After typing o the cursor is placed on the open line in Insert mode.

➲ To open the line above the cursor, you can use the
capital "O" command

VIM 6.2

➲ Use the "a" command to append text after the
character under the cursor

➲ as apposed to "i" which inserts before the character

➲ Move the cursor down to the first "--->" line

➲ Use the "$" by itself in Normal Mode to go to the
end of the line

➲ Now type "a" to start appending to the line
---> This line will allow you to practice

---> This line will allow you to practice appending text to the end of a line.

VIM 6.2 (cont.)

➲ You can use the capital "A" command to
automagically append to end of a line

➲ Instead of having to type "$" and then "a"

➲ Note that when you append, you go into Insert
Mode, just that it starts after the character rather
than before

VIM 6.3

➲ In order to get into Replace Mode, you type the
command capital "R" from Normal Mode

➲ Move the cursor to the before the word "last" in
the first sentence

➲ Hit "R" and replace the remainder of the sentence
with the one below it

---> To make the first line the same as the last on this page use the keys.

---> To make the first line the same as the second, type R and the new text.

➲ Hit [Esc] when done to get back to Normal Mode

VIM 6.4

➲ VI's default behaviour can be modified by using the "set"
command from within Last Line Mode

➲ Normally, when you search, the search is case sensitive.

➲ We can turn this off by typing ":set ic" for Ignore case

➲ Now, a search for ignore ("/ignore") will return all matches,
disregarding case

➲ Hit "n" to get to the next match

➲ Type in ":set hls is" to tell search to highlight all matching
items

VIM Help

➲ If you need help with VI, it has online docs you
can access by
● Hitting [F1] from within vi
● Typing ":help [Enter]"

➲ Use ":q[Enter]" to quit the help

➲ You can get help on specific topics by typing
":help <topic>[Enter]"

Second Field in Directory listings

➲ Last class, somebody asked what the second field
in directories for "ls -l" was

➲ I incorrectly said it was the number of files in
that directory

➲ It is actuallyis the number of sub directories in
that directory

➲ Will always have at least 2 since "." and ".." are
in every directory

The root Account

➲ System defined account

➲ No restrictions
● read, modify, or delete any file on system
● change permissions, ownership of any file
● run special programs

● ones that modify partitions on the hard drive
● create filesystems

➲ easy to make accidental mistakes
● sit on your hands before doing something as root

The root Account (cont.)

➲ Normally, root has a different character for a
prompt
● users have a $
● root has a #

➲ Log in a root only when necessary

➲ When you are done as root, log out

The root Account (cont.)

➲ Use the "su" command to swith to root

➲ "su" stands for switch user

➲ You can change to user without having to log out

➲ "su" can take any user as an argument, but root is the only
one who can switch to any user

➲ "su" will prompt you for the root password

➲ use a single dash after su to load root's environment
(otherwise, it will keep your environment)

$ su -

Password:

Booting Linux

➲ When Linux boots, it runs the kernel

➲ Mounts the root device (/dev/hda# normally)

➲ LILO is the older boot program for linux
● configuration file found at /etc/lilo.conf

➲ Grub is newer
● configuration file found at /etc/grub.conf

Shutting Down Linux

➲ Never just "turn off" a Linux system

➲ as root
● # shutdown 20:00 - will shutdown at 8:00pm
● # shutdown -t 10 - will shudown in 10 seconds
● # shutdown now - will shotdown now
● # halt - same as "shutdown now"

➲ When system says "The system is halted", you
can turn the power off

➲ [Ctrl]-[Alt]-[Del] will reboot nicely on Linux

System Bootup

➲ When the system boots up, it will start either in
graphical or text-only modes

➲ When system first boots, it runs "init"
● responsible for running all startup scripts
● brings system to "multiuser" mode

➲ init program uses configuration file /etc/inittab

➲ NOTE: copy /etc/inittab before modifying it --
editing incorrectly can cause system to not boot
correctly

/etc/inittab

➲ By default, /etc/inittab starts 6 virtual consoles

➲ It starts a default runlevel
● example line looks like "id:3:initdefault:"
● 1 is single user mode
● 3 is text-only mode
● 5 is graphical mode

Mounting File Systems

➲ Before a filesystem is accessible to the system, it
must be mounted

➲ Includes hard drives as well as floppy drives,
cdrom drives, etc.
● /mnt/floppy is normally where you mount floppies
● /mnt/cdrom for cdroms
● /mnt/zip for zip drives

➲ Before mounting the file system, the directory, or
mount point, will be empty

Mounting File Systems (cont.)

➲ System automagically mounts the "root file
system" on bootup

➲ Also mounts /usr, /var, /home, etc. if they are on
different partitions or hard drives

➲ "mount" used to mount file systems

➲ "umount" (note the lack of a "n") used to
unmount file systems

Mounting File Systems (cont.)

➲ /etc/fstab contains default file system mount points

➲ First field is the device (normally from /dev directory)

➲ Second is the mount point

➲ Third is the file system type (ext2, msdos, etc.)

➲ Fourth are mount options

➲ Fifth field is used by dump (don't worry about it)

➲ Sixth field is what order to check the filesystems for
errors on bootup

Mounting File Systems (cont.)

➲ /proc needs to be mounted as it is a "virtual file
system" with no real hard drive underneath it

➲ swap is for all swap partitions (called virtual
memory in Windoze world...incorrectly)

➲ Must be root to use mount

mount -t <type> /dev/<device> /<mountpoint>

umount /dev/<device> -- same as

umount /<mountpoint>

Managing Users

➲ You should at least create one user account for
yourself to use on a regular basis

➲ Every person using the computer should have
their own account

➲ User accounts are stored in /etc/passwd

Managing Users

➲ Every user has
● user name -- normally 2-8 characters
● user ID -- unique number for the user
● group ID -- the user's default group
● password -- users encrypted password
● full name -- users real name
● home directory -- where the users files go and where the

user starts when logging in
● login shell -- the shell that gets run when the user logs

in

Managing Users

➲ /etc/passwd contains these values separated by
":"

➲ stored as:
user name:encrypted password:UID:GID:full name: home directory:login shell

➲ an example:
tduffy:x:1057:1502:Tom Duffy:/home/tduffy:/bin/bash

➲ Newer versions of Linux don't store the encrypted password
in /etc/passwd (that is why there is an "x" there)

➲ Now, they are stored in /etc/shadow only readable by root

/etc/group

➲ /etc/group contains a list of Group ID's or GID's

➲ stored as:

group name:password:GID:other members

➲ an example:

instructors:x:1502:tduffy,rgreen,rms

➲ Use "addgroup" or "groupadd" to add a new
group to the system

Adding Users

➲ A user needs an entry in /etc/passwd
● unique UID
● specify GID, full name, etc.

➲ home directory should be created and
permissions set on that directory so that the user
owns it

➲ Default "dotfiles" should be copied to user's
home directory

➲ Other stuff such as email, etc should be setup

Adding Users (cont.)

➲ Normally, not all done by hand

➲ Can use "adduser" or "useradd" (the same
program)

➲ uses config file /etc/default/useradd

➲ "userdel" or "deluser" will delete a user

➲ You can temporarily disable a user account by
putting a "*" in the password field of /etc/passwd

Adding Users (cont.)

➲ After adding a user, change his/her passwd

passwd larry

➲ The user can change their passwd when they log
in

➲ Can also change their shell with "chsh"

➲ Can change their full name with "chfn"

Software Management

➲ Software in most versions of Linux is managed
with "rpm"

➲ "rpm" means RedHat Pacakage Manager, but is
on many other distributions of Linux

rpm -qa -- list all packages installed

rpm -i <pacakge> -- install a package

rpm -U <package> -- upgrade a package

rpm -e <package> -- remove a package

Device Drivers

➲ Most device drivers under linux are kernel
modules
● Loaded into kernel while running

➲ Use "lsmod" to list the drivers installed in system

➲ Many are extra features added into kernel, but
some are drivers

➲ "insmod" will load a driver

➲ "rmmod" will remove a driver

Device Drivers (cont.)

➲ /etc/modules.conf contains information about
what drivers are used for what pieces of the
system

➲ "eth0" is the first ethernet (network) card in the
system

➲ "sound-slot-0" is the first sound card in your
system

alias <device> <driver>

➲ file also contains driver options

Emergency Recovery

➲ DON'T PANIC :)

➲ Always have a "recovery disk"
● created when installing Red Hat

➲ Alternatively, boot Red Hat CD 1 and type
"linux rescue" at first prompt

➲ Keep backups of important files (always good
advice)

➲ When all else fails, search the web or email linux
mailing lists for help

Emergency Recovery (cont.)

➲ If you forget your root passwd
● reboot system
● before system starts linux
● type [Ctrl]-[r] to get to lilo prompt and type "linux 1"
● will come up in single user mode and log you in as root

automagically
● use "passwd" to change root's password

Emergency Recovery (cont.)

➲ If your file system gets damaged and the regular
check cannot fix it
● normally, if the boot up cannot fix your file system

automatically, it will error and drop to a root shell
● type "fsck" for file system check followed by the root file

system device
● eg, # fsck /dev/hda5
● This will ask many questions. It is ok to answer "yes" to

everything
● Can do this automatically, by typing "# fsck -y /dev/hda5"

where /dev/hda5 is your root file system

Emacs

➲ Alternative to VI

➲ Lost of commands, but has meny system

➲ Kitchen sink of programs

Other Useful Commands

➲ The "find" command will search the file system

$ fine . -name <filetolookfor> -print

➲ will search the current directory and all subdirs
for the file matching exactly what you put in

➲ if you want to use wildcards, you must escape
them
● escaping characters means putting a "\" in front of it

$ find . -name *<string>* -print

Other Useful Commands (cont.)

➲ The simpler "locate" command will search the
whole hard drive

➲ Actually searches a database that gets built over
night

➲ New files will not be found

➲ A LOT fater than "find"

Other Useful Commands (cont.)

➲ The "grep" command will search through a file
for a string

$ grep <string_to_look_for> <filename>

➲ Will print out every line that the
<string_to_look_for> appears on in <filename>

Other Useful Commands (cont.)

➲ The "uname" command will tell you what
version of UNIX you are running

➲ Give it the "-a" option to print out more info

$ uname -a
Linux localhost.localdomain 2.4.9-31SGI_XFS_1.1_PR4 #1 Sun Apr

7 23:06:07 CDT 2002 i686 unknown

➲ Tells you the type of UNIX, the name of the
machine, the version of the kernel and what type
of processor you are running on

Linux Graphics Stack

➲ Graphics Stack

Graphics Hardware

X Server

Window Manager

Desktop Environment

Linux Graphics Stack

➲ Specific Graphic Stack (GNOME)

Nvidia GeForce 2

Xfree86 using nv driver

Sawfish

Gnome 1.4

Linux Graphics Stack

➲ Specific Graphic Stack (KDE)

Nvidia GeForce 2

Xfree86 using nv driver

KWM

K Desktop Environment 2.2

Network Tranparency

➲ Linux is a multiuser, multitasking environment

➲ Multiple people can be on a machine at one time

➲ Traditionally, use "telnet" to get to remote
machine

➲ Nowadays, use "ssh"
● passwords are encrypted
● all commands sent over are encrypted

➲ Must have an account on remote system

Network Tranparency

➲ In order to telnet or ssh to a machine, you must
know the IP address or hostname

$ ifconfig -a

➲ will print the IP address of your machine

$ ssh -l student 130.212.56.166

➲ type "student" as Password:

➲ Now, you are on the instructor computer

➲ All commands you type affect instructor machine

Your Environment

➲ In the shell, a way to configure applications and commands
is by using environment variables

➲ Use "env" to print out environment variables in bash

➲ Use "printenv" in tcsh

➲ To set environment variables, use

$ export VARIABLE=value

➲ for bash, sh, ksh

$ setenv VARIABLE value

➲ for tcsh, csh

DISPLAY environment

➲ A special environment variable called DISPLAY
tells all graphical applications where to display

➲ normaly set to ":0" or "localhost:0"

➲ if you want to display to another machine, you
must set DISPLAY to <ipaddr>:0

➲ We use the ":0" to denote the first X server
running on that machine (normally the case)

$ export DISPLAY=130.212.56.xxx:0

Gnome Screenshot

GNOME

➲ GNOME stands for Gnu Network Object Model
Environment
● Historic name...don't worry about it really

➲ Started by Miguel de Icaza

➲ Wanted to create a Free desktop for UNIX
● KDE had proprietary tool kit (at the time)

Gnome (cont.)

➲ Gnome Panel -- long bar at bottom of screen
● collection of menus
● panel applets
● application launchers

➲ Main Menu -- one with foot on it
● similar to "Start" menu in Windoze
● contains launchers for many pre-loaded applications
● normally item to logout or restart your computer

Gnome (cont.)

➲ Panel Applets
● small programs that run in the panel
● eg. Desk Guide allows you to switch virtual desktops

➲ Application Launchers
● buttons that start programs
● toolbox starts the "Control Center"
● question mark starts "Help Browser"
● monitor starts a terminal (command line from within Gnome)

➲ Arrow on each side of panel hide the panel

Gnome (cont.)

➲ Desktop is area outside of panel
➲ supports drag-and-drop

➲ double click on icon (with left mouse button) to
launch it

● If it is a program, application will start
● If it is data, the appropriate program will start and load the

data
● If it is a folder, the Nautilus file manager will start in that

folder

Nautilus

➲ Nautilus is the file manager for Gnome
➲ Manipulate your files (graphically)

➲ Left bar has Help, History, Notes, etc.

➲ To move, simply drag and drop your folder or file

➲ To copy, hold [Ctrl] while dragging and dropping

➲ Run a program by double clicking that program or a
data file associated with a program

➲ Use the right mouse button to do things like "rename",
"delete", etc.

Nautilus (cont.)

➲ To select many items, hold down [Ctrl] and
single click additional items

➲ To move between folders, open another window
of Nautilus

➲ You can drag stuff to Desktop as well

Gnome (cont.)

➲ Gnome is very configurable
● can have multiple panels (horizontal or vertical)
● can have the panels hide automagically
● many applets that can go into the panel

➲ Gnome follows several X windows conventions
● left mouse is used to select and drag items
● right mouse brings up a menu for a selected item
● middle mouse button is used to paste text (if in a text area) or

to move things
● middle mouse can be "emulated" by pressing right and left at the same

time (if you only have a two button mouse)

Gnome (cont.)

➲ To cut and paste using the mouse,
● use the left mouse button to drag across some text to copy
● move the mouse cursor to the place where you want to paste

the text
● click the middle mouse button (or mouse wheel if you have

that)

Gnome (cont.)

➲ Each window has some buttons on the border to
control thewindow.
● minimize
● maximize
● close the window
● (sometimes) windowshade the window
● can be configured in the Control Panel component "Window

Mananger"

Gnome (cont.)

➲ Window Manager
➲ Gno me uses sawfish as the default window manager

➲ Not dependent on any one window manager

➲ can use others, but sawfish is most compatible -- A
Gnome Compilant window manager

● sawfish
● IceWM
● Enlightenment
● FVWM2
● WindowMaker

Gnome Control Panel Walkthrough

➲ Let's walk through the Gnome Control Panel

KDE

➲ Originally based on a proprietary widget set

➲ Now 100% Free as in Speech

➲ More similar to Windoze

➲ Gnome and KDE are compatible
➲ drag-and-drop works between them

➲ docklets work interchangably

➲ cut & paste unified

➲ Your choice...

KDE (cont.)

➲ Developed in Germany (mostly)

➲ Works with QT Embedded (Linux PDA OS)
● applications developed for KDE can be put on PDA as well

as other way around

➲ Uses "K" as the "start" menu

➲ Koffice is a free office sweet that is integrated
with KDE

Bibliography Resources

➲ J.T.S. Moore, "Revolution OS"

http://www.revolution-os.com/

➲ Michael C. Pierce & Robert K. Ware, "VIM Tutor"

http://cosoft.org.cn/html/documents/english/vim/tutor.html

➲ Eric Raymond, "The Cathedral and the Bazaar"

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

➲ Neal Stephenson, "In the Beginning was the Command Line"

http://www.cryptonomicon.com/beginning.html

➲ Matt Welsh et. al., "Installation and Getting Started Guide"

http://www.tldp.org/LDP/gs/gs.html

