How To Write Shared Libraries

Ulrich Drepper

Red Hat, Inc.
drepper@redhat.com

January 22, 2005

Abstract

Today, shared libraries are ubiquitous. Developers use them for multiple reasons and create
them just as they would create application code. This is a problem, though, since on many
platforms some additional techniques must be applied even to generate decent code. Even more
knowledge is needed to generate optimized code. This paper introduces the required rules and
techniques. In addition, it introduces the concept of ABI (Application Binary Interface) stability
and shows how to manage it.

1 Preface 1.1 A Little Bit of History

For a long time, programmers collected commonly used! N binary format used initially for Linux was anout
code in libraries so that code could be reused. This save@riant. When introducing shared libraries certain design
development time and reduces errors since reused codcisions had to be made to work in the limitations of
only has to be debugged once. With systems runnin%-c’“t . The main acceptedll|m|tat|on was thatredoca-
dozens or hundreds of processes at the same time reudgnsare performed at the time of loading and afterward.
of the code at link-time solves only part of the problem. The shared libraries have to exist in the form they are
Many processes will use the same pieces of code whichSed at run-time on disk. This imposes a major resiric-
they import for libraries. With the memory managementtion on the way shared I|bra_r|es are built and used: every
systems in modern operating systems it is also possibighared library must have afixed load address; otherwise it
to share the code at run-time. This is done by loading thavould not be possible to generate shared libraries which

code into physical memory only once and reusing it ind0 Not have to be relocated.

multiple processes via virtual memory. Libraries of this) _)
kind are called shared libraries. The fixed load addresses had to be assigned and this has

to happen without overlaps and conflicts and with some

The concept is not very new. Operating system designer&ituré safety by allowing growth of the shared library.
implemented extensions to their system using the infraslt i therefore necessary to have a central authority for
tructure they used before. The extension to the OS coul{’® assignment of address ranges which in itself is a ma-
be done transparently for the user. But the parts the usdP! Problem. But it gets worse: given a Linux system
directly has to deal with created initially problems. of today with many hundred of DSOs (Dynamic Shared
Objects) the address space and the virtual memory avail-
The main aspect is the binary format. This is the for-able to the application gets severely fragmented. This
mat which is used to describe the application code. Longould limit the size of memory blocks which can be dy-
gone are the days that it was sufficient to provide a memnbamically allocated which would create unsurmountable
ory dump. Multi-process systems need to identify differ- Problems for some applications. It would even have hap-
ent parts of the file containing the program such as thé€ned by today that the assignment authority ran out of
text, data, and debug information parts. For this, binary2ddress ranges to assign, at least on 32-bit machines.

formats were introduced early on. Commonly used in the .
early Unix-days were formats such asut or COFF. We still have not covered all the drawbacks of #heut

These binary formats were not designed with shared liShared libraries. Since the applications using shared li-
braries in mind and this clearly shows. braries should not have to be relinked after changing a
shared library it uses, the entry points, i.e., the function
and variable addresses, must not change. This can only
be guaranteed if the entry points are kept separate from
the actual code since otherwise limits on the size of a
Copyright(® 2002, 2003, 2004, 2005 Ulrich Drepper function would be hard-coded. A table of function stubs
All rights reserved. No redistribution allowed. which call the actual implementation was used in solu-

mailto:drepper@redhat.com

tion used on Linux. The static linker got the address offollowed to get any benefits, and some more rules have to

each function stub from a special file (with the filenamebe followed to get optimal results. Explaining these rules

extensionsa). At run-time a file ending inso.X.Y.Z will be the topic of a large portion of this paper.

was used and it had to correspond to the usedfile.

This in turn requires that an allocated entry in the stubNot all uses of DSOs are for the purpose of saving re-

table always had to be used for the same function. Theources. DSOs are today also often used as a way to

allocation of the table had to be carefully taken care of structure programs. Different parts of the program are

Introducing a new interface meant appending to the taputinto separate DSOs. This can be a very powerful tool,

ble. It was never possible to retire a table entry. To avoidespecially in the development phase. Instead of relink-

using an old shared library with a program linked with aing the entire program it is only necessary to relink the

newer version, some record had to be kept in the applicaBbSO(s) which changed. This is often much faster.

tion: the X andY parts of the name of th@o.X.Y.Z

suffix was recorded and the dynamic linker made sureSome projects decide to keep many separate DSOs even

minimum requirements were met. in the deployment phase even though the DSOs are not
reused in other programs. In many situations it is cer-

The benefits of the scheme are that the resulting progrartainly a useful thing to do: DSOs can be updated indi-

runs very fast. Calling a function in such a shared li- vidually, reducing the amount of data which has to be

braries is very efficient even for the first call. It can transported. But the number of DSOs must be kept to a

be implemented with only two absolute jumps: the firstreasonable level. Not all programs do this, though, and

from the user code to the stub, and the second from theve will see later on why this can be a problem.

stub to the actual code of the function. This is probably

faster than any other shared library implementation, buBefore we can start discussing all this some understand-

its speed comes at too high a price: ing of ELF and its implementation is needed.

1.3 How Is ELF Implemented?
1. a central assignment of address ranges is needed;

2. collisions are possible (likely) with catastrophic re-

sults: The handling of a statically linked application is very

simple. Such an application has a fixed load address
3. the address space gets severely fragmented. which the kernel knows. The load process consists sim-

ply of making the binary available in the appropriate ad-
dress space of a newly created process and transferring

For all these reasons and more, Linux converted early ogontrol to the entry point of the application. Everything

to using ELF (Executable Linkage Format) as the binaryelse was done by the static linker when creating the exe-

format. The ELF format is defined by the generic spec-cutable.

ification (gABI) to which processor-specific extensions

(psABI) are added. As it turns out the amortized cost ofDynamically linked binaries, in contrast, are not com-

function calls is almost the same as toout but the plete when they are loaded from disk. It is therefore

restrictions are gone. not possible for the kernel to immediately transfer con-
trol to the application. Instead some other helper pro-
1.2 The Move To ELF gram, which obviously has to be complete, is loaded as

well. This helper program is thynamic linker The task

of the dynamic linker is it, to complete the dynamically
For programmers the main advantage of the switch tainked application by loading the DSOs it needs (the de-
ELF was that creating ELF shared libraries, or in ELF-pendencies) and to perform the relocations. Then finally
speak DSOs, becomes very easy. The only difference bewontrol can be transferred to the program.
tween generating an application and a DSO is in the final
link command line. One additional optionghared in This is not the last task for the dynamic linker in most
the case of GNU Id) tells the linker to generate a DSOcases, though. ELF allows the relocations associated with
instead of an application, the latter being the default. Ina symbol to be delayed until the symbol is needed. This
fact, DSOs are little more than a special kind of binary;|azy relocation scheme is optional, and optimizations dis-
the difference is that they have no fixed load address angussed below for relocations performed at startup imme-
hence require the dynamic linker to actually become exdiately effect the lazy relocations as well. So we ignore
ecutable. With Position Independent Executable (PIEs)n the following everything after the startup is finished.
the difference shrinks even more.

1.4 Startup: In The Kernel
This, together with the introduction of GNU Libtool which
will be described later, has led to the wide adoption of
DSOs by programmers. Proper use of DSOs can helstarting execution of a program begins in the kernel, nor-
save large amounts of resources. But some rules must beally in theexecve system call. The currently executed

2 Version 3.0 How To Write Shared Libraries

typedef struct typedef struct

{
Elf32 Word p_type; Elf64 _Word p_type;
Elf32 _Off p _offset; Elf64 Word p_flags;
EIf32 _Addr p _vaddr; Elf64 _Off p _offset;
EIf32 _Addr p _paddr; EIf64 _Addr p _vaddr;
Elf32 Word p_filesz; Elf64 _Addr p _paddr;
Elf32 Word p_memsz; Elf64 _Xword p filesz;
Elf32 Word p_flags; Elf64 Xword p_memsz;
Elf32 Word p_align; Elf64 Xword p _align;

} EIf32 _Phdr; } EIf64 _Phdr;

Figure 1: ELF Program Header C Data Structure

code is replaced with a new program. This means the adn the program header table and #aghentsize field
dress space content is replaced by the content of the fileontains the size of each entry. This last value is useful
containing the program. This does not happen by simonly as a run-time consistency check for the binary.
ply mapping (usingnmag) the content of the file. ELF
files are structured and there are normally at least thre&he different segments are represented by the program
different kinds of regions in the file: header entries with tHeT_LOADvalue in thep_type field.
Thep_offset andp_filesz fields specify where in the
file the segment starts and how long it is. Theaddr
o Code which is executed; this region is normally not andp_memszfields specifies where the segment is located
writable; in the the process’ virtual address space and how large
the memory region is. The value of the theaddr field
itself is not necessarily required to be the final load ad-
dress. DSOs can be loaded at arbitrary addresses in the
o Datawhich is not used at run-time; since not needediirtual address space. But the relative position of the seg-
it should not be loaded at startup. ments is important. For pre-linked DSOs the actual value
of the p_vaddr field is meaningful: it specifies the ad-
dress for which the DSO was prelinked. But even this
Modern operating systems and processors can protect mgoes not mean the dynamic linker cannot ignore this in-
ory regions to allow and disallow reading, writing, and formation if necessary.
executing separately for each page of merﬁbryt is
preferable to mark as many pages as possible not writabl€he size in the file can be smaller than the address space
since this means that the pages can be shared betwegnakes up in memory. The firgtfilesz bytes of the
processes which use the same application or DSO thememory region are initialized from the data of the seg-
page is from. Write protection also helps to detect andment in the file, the difference is initialized with zero.
prevent unintentional or malignant modifications of dataThis can be used to handle BSS secffbrsections for
or even code. uninitialized variables which are according to the C stan-
dard initialized with zero. Handling uninitialized vari-
For the kernel to find the different regions, or segmentsables this way has the advantage that the file size can be
in ELF-speak, and their access permissions, the ELF fileeduced since no initialization value has to be stored, no
format defines a table which contains just this informa-data has to be copied from dist to memory, and the mem-
tion, among other things. The ELF Program Header ta-ory provided by the OS via th@emapinterface is already
ble, as it is called, must be present in every executablénitialized with zero.
and DSO. It is represented by the C ty82 _Phdr
andelfé4 _Phdr which are defined as can be seen in fig-Thep_flags finally tells the kernel what permissions to
ure[d. use for the memory pages. This field is a bitmap with the
bits given in the following table being defined. The flags
To locate the program header data structure another datae directly mapped to the flagsnapunderstands.
structure is needed, the ELF Header. The ELF header is
the only data structure which has a fixed place in the file,
starting at offset zero. Its C data structure can be seen
in figure[2. Thee_phoff field specifies where, counting
from the beginning of the file, the program header table
starts. The=_phnum field contains the number of entries

o Data which is modified; this region is normally not
executable;

2A BSS section contains only NUL bytes. Therefore they do not

1A memory page is the smallest entity the memory subsystem ofhave to be represented in the file on the storage medium. The loader
the OS operates on. The size of a page can vary between differefust has to know the size so that it can allocate memory large enough
architectures and even within systems using the same architecture. and fill it with NUL

Ulrich Drepper Version 3.0 3

typedef struct typedef struct
{ {
unsigned char e _ident[El _NIDENT]; unsigned char e _ident[El _NIDENT];
Elf32 _Half e _type; Elf64 _Half e _type;
Elf32 _Half e _machine; Elf64 _Half e _machine;
Elf32 _Word e_version; Elf64 _Word e_version;
EIf32 _Addr e _entry; Elf64 _Addr e _entry;
Elf32 _Off e _phoff; Elf64 _Off e _phoff;
Elf32 _Off e _shoff; Elf64 _Off e _shoff;
ElIf32 _Word e_flags; Elf64 _Word e_flags;
Elf32 _Half e _ehsize; Elf64 _Half e _ehsize;
Elf32 _Half e _phentsize; Elf64 _Half e _phentsize;
Elf32 _Half e _phnum; Elf64 _Half e _phnum;
Elf32 _Half e _shentsize; Elf64 _Half e _shentsize;
Elf32 _Half e _shnum; Elf64 _Half e _shnum;
Elf32 _Half e _shstrndx; Elf64 _Half e _shstrndx;
} EIf32 _Ehdr; } EIf64 _Ehdr;
Figure 2: ELF Header C Data Structure
pflags | Value | mmapflag Description application is complete. For this a structured way exists.
PE X 1 PROTEXEC | Execute Permission The kernel puts an array of tag-value pairs on the stack
PEW > PROTWRITE | Write Permission | ©f the new process. Thiguxiliary vectorcontains be-
PER 4 PROTREAD | Read Permission side the two aforementioned values several more values

which allow the dynamic linker to avoid several system
calls. Theelf.h header file defines a number of con-

)) stants with &T_ prefix. These are the tags for the entries
After mapping all thePT_LOADsegments using the ap- i, the auxiliary vector.

propriate permissions and the specified address, or after
freely allocating an address for dynamic objects whichagier setting up the auxiliary vector the kernel is finally

have no fixed load address, the next phase can start. Thg,qy 1o transfer control to the dynamic linker in user
virtual address space of the dynamically linked executablg,gde. The entry point is defined énentry field of the
itself is set up. But the binary is not complete. The kernelg| E neader of the dynamic linker.

has to get the dynamic linker to do the rest and for this

the dynamic linker has to be loaded in the same way as) o

the executable itself (i.e., look for the loadable segments-2 Startup in the Dynamic Linker

in the program header). The difference is that the dy-

namic linker itself must be complete and should be freely

relocatable. The second phase of the program startup happens in the
dynamic linker. Its tasks include:

Which binary implements the dynamic linker is not hard-

coded in the kernel. Instead the program header of the

application contains an entry with the t&J_INTERP.

The p_offset field of this entry contains the offset of

a NUL-terminated string which specifies the file name of

this file. The only requirement on the named file is that

its load address does not conflict with the load address of

any possible executable it might be used with. In gen-

eral this means that the dynamic linker has no fixed load

address and can be loaded anywhere; this is just what dy-

namic binaries allow.

e Determine and load dependencies;
¢ Relocate the application and all dependencies;

e Initialize the application and dependencies in the
correct order.

Once the dynamic linker has also been mapped into thén the following we will discuss in more detail only the
memory of the stillborn process we can start the dynamiaelocation handling. For the other two points the way
linker. Note it is not the entry point of the application to for better performance is clear: have fewer dependencies.
which control is transfered to. Only the dynamic linker is Each participating object is initialized exactly once but
ready to run. Instead of calling the dynamic linker right some topological sorting has to happen. The identify and
away, one more step is performed. The dynamic linkedoad process also scales with the number dependencies;
somehow has to be told where the application can bén most (all?) implementations this is not only a linear
found and where control has to be transferred to once thgrowth.

4 Version 3.0 How To Write Shared Libraries

The relocation process is normﬁl;he most expensive The result of any relocation will be stored somewhere
part of the dynamic linker's work. It is a process which is in the object with the reference. Ideally and generally
asymptotically at leagd(R+ nr) whereR is the number the target location is in the data segment. If code is in-
of relative relocations;; is the number of named reloca- correctly generated by the user, compiler, or linker relo-
tions, andn is the number of participating DSOs (plus cations might modify text or read-only segments. The
the main executable). Deficiencies in the ELF hash tadynamic linker will handle this correctly if the object is
ble function and various ELF extensions modifying the marked, as required by the ELF specification, with the
symbol lookup functionality may well increase the factor DF - TEXTRELSset in theDT FLAGSentry of the dynamic
to O(R + rnlogs) wheres is the number of symbols. section (or the existence of tEr_ TEXTRELflag in old
This should make clear that for improved performance itbinaries). But the result is that the modified page can-
is significant to reduce the number if relocations and symnot be shared with other processes using the same object.
bols as much as possible. After explaining the relocationlhe modification process itself is also quite slow since
process we will do some estimates for actual numbers. the kernel has to reorganize the memory handling data
structures quite a bit.

1.5.1 The Relocation Process

1.5.2 Symbol Relocations
Relocation in this context means adjusting the application
and the DSOs, which are loaded as the dependencies,
their own and all other load addresses. There are tw
kinds of dependencies:

e dynamic linker has to perform a relocation for all
symbols which are used at run-time and which are not
known at link-time to be defined in the same object as the
reference. Due to the way code is generated on some ar-

« Dependencies to locations which are known to bechitectures it is possible to delay the processing of some

in the own object. These are not associated with <,j{elocations until the references in question are actually

specific symbol since the linker knows the relative used. '_I'h|s is on many archltectures_the case for calls
position of the location in the object. to functions. All other kinds of relocations always have

to be processed before the object can be used. We will
Note that applications do not have relative reloca-jgnore thelazy relocation processingince this is just a
tions since the load address of the code is knownnethod to delay the work. It eventually has to be done
at link-time and therefore the static linker is able to 3nd so we will include it in our cost analysis. To actu-
perform the relocation. ally perform all the relocations before using the object is
. sed by setting the environment variabizBIND_NOWO
* Depent_je.r_\ue's based on symbols. The refe'ren.ce 03 non-empty value. Lazy relocation can be disabled for
the deﬁmﬂo_n is generally, b.Ut. r_10t necessarily, in 3an individual object by adding the now option to the
different object than the definition. linker command line. The linker will set thz= BIND_NOW
flag in the DT_FLAGS entry of the dynamic section to

: mark the DSO. This setting cannot be undone without
The implementation of relative relocations is easy. The 9

linker can compute the offset of the target destination in[)ee“:zggiﬁﬁsljrg;; Vtvg%l:gg S0 this option should only
the object file at link-time. To this value the dynamic '

linker only has to add the load address of the object anq.
store the result in the place indicated by the relocation. A
runtime the dynamic linker has to spend only a very smal
and constant amount of time which does not increase i
more DSOs are used.

he actual lookup process is repeated from start for each
Itsymbol relocation in each loaded object. Note that there
Fan be many references to the same symbol in different
objects. The result of the lookup can be different for each
of the objects so there can be no short cuts except for

. . .caching results for a symbol in each object in case more
The relocation based on a symbol is much more compli-

. . _""than one relocation references the symbol. Tdoku
cated. The ELF symbol resolution process was demgneé] y b

ful so that it handl gif t orob copementioned in the steps below is an ordered list of
very powertul so that it can handie many difierent prob- ., |5aded objects which can be different for each ob-
lems. All this powerful functionality adds to the com-

plexity and run-time costs, though. Readers of the foI—jeCt ftself. The way the scope is computed is quite com-

: - : . L . lex and not really relevant here so we refer the inter-
p y

lowing Qescrlptlon might question the deCIS.|ons which sted reader to the ELF specification. Important is that

led to this process. We cannot argue about this here; rea e length of the scope is normally directly dependent

ers are referred to discussions of ELF. Fact is that symbo n the number of loaded objects. This is another factor

relocation is a costly process and the more DSOs partic\7vhere reducing the number of loaded objects is increas-

ipate or the more symbols are defined in the DSOs, th(i::

longer the symbol lookup takes. hg performance.

3\We ignore the pre-linking support here which in many cases canThe_ lookup process for one symbol proceeds in the fol-
reduce significantly or even eliminate the relocation costs. lowing steps:

Ulrich Drepper Version 3.0 5

Histogram for bucket list length in section [2] '.hash’ (total of 1023 buckets):
Addr: 0x42000114 Offset: 0x000114 Link to section: [3] '.dynsym’
Length Number % of total Coverage

0 132 12.9%

1 310 30.3% 15.3%
2 256 25.0% 40.6%
3 172 16.8% 66.0%
4 92 9.0% 84.2%
5 46 4.5% 95.5%
6 14 1.4% 99.7%
7 1 0.1% 100.0%

Average number of tests: successful lookup: 1.994080
unsuccessful lookup: 1.981427

Figure 3: Example Output fasu-readelf -1 libc.so

Histogram for bucket list length in section [2] '.hash’ (total of 191 buckets):
Addr: 0x00000114 Offset: 0x000114 Link to section: [3] '.dynsym’
Length Number % of total Coverage

0 103 53.9%

1 71 37.2% 67.0%
2 16 8.4% 97.2%
3 1 0.5% 100.0%

Average number of tests: successful lookup: 1.179245
unsuccessful lookup: 0.554974

Figure 4: Example Output fatu-readelf -1 libnss files.so

1. Determine the hash value for the symbol name. Note that there is no problem if the scope contains more
than one definition of the same symbol. The symbol
2. In the first/next object in the lookup scope: lookup algorithm simply picks up the first definition it
. finds. This has some perhaps surprising consequences.
2.2 petermme the hash bucket for the symbql US” Assume DSO ‘A defines and references an interface and
N9 thg hash value and the hash table size '"DSO ‘B’ defines the same interface. If now ‘B’ precedes
the object. ‘A in the scope, the reference in ‘A" will be satisfied
2.b Get the name offset of the symbol and usingby the definition in ‘B’. It is said that the definition in
it as the NUL-terminated name. ‘B’ interposes the definition in ‘A’. This concept is very
2.c Compare the symbol name with the reloca- powerful since it allows more ;pecialized implementation
of an interface to be used without replacing the general
code. One example for this mechanism is the use of the
2.d Ifthe names match, compare the version nameg, pre| oADfunctionality of the dynamic linker where
as well. This only has to happen if both, the gqgitional DSOs which were not present at link-time are
reference and the definition, are versioned. Itintroduced in run-time. But interposition can also lead

requires a string comparison, too. If the ver- to severe problems in ill-designed code. More in this in
sion name matches or no such comparisonsectio T53.

is performed, we found the definition we are

looking for. Looking at the algorithm it can be seen that the perfor-
2.e Ifthe definition does not match, retry with the mance of each lookup depends, among other factors, on

next element in the chain for the hash bucket.the length of the hash chains and the number of objects
in the lookup scope. These are the two loops described
above. The lengths of the hash chains depend on the
number of symbols and the choice of the hash table size.
Since the hash function used in the initial step of the algo-
rithm must never change these are the only two remaining
variables. Many linkers do not put special emphasis on
selecting an appropriate table size. The GNU linker tries
to optimize the hash table size for minimal lengths of the

tion name.

2.f If the chain does not contain any further ele-
ment there is no definition in the current ob-
ject and we proceed with the next object in
the lookup scope.

3. If there is no further object in the lookup scope the
lookup failed.

6 Version 3.0 How To Write Shared Libraries

chains if it gets passed th® option (note: the linkemot structures. Strings are stored in the C-format; they are
the compiler, needs to get this option). terminated by a NUL byte and no initial length field is

)] used. This means string comparisons has to proceed until
A note on the current implementation of the hash table op-5 o matching character is found or until the end of the
timization. The GNU binutils linker has a simple minded string. This approach is susceptible to long strings with

heuristic which often favors small table sizes over short fi Unfortunatelv this i t
chain length. For large projects this might very wielt common pretixes. Unfortunately this 1S not uncommon.

creasethe startup costs. The overall memory consumptior
will be sometimes significantly reduces which might com-
pensate sooner or later but it is still advised to check th:
effectiveness of the optimization. A new linker implemen-
tation is going to be developed and it contains a better algc
rithm.

namespace some_namespace {
class some_longer_class_name {
int member_variable;
public:
some_longer_class_name (int p);
int the_getter_function (void);

To measure the effectiveness of the hashing two numbe g
are important: }

e The average chain length for a successful lookup. The name mangling scheme used by the GNU C++ com-

o The average chain length for an unsuccessful lookupler before version 3.0 used a mangling scheme which
put the name of a class member first along with a descrip-
tion of the parameter list and following it the other parts

It might be surprising to talk about unsuccessful lookupsof the name such as namespaces and nested class names.
here but in fact they are the rule. Note that “unsuccessThe result is a name which distinguishable in the begin-
ful” means only unsuccessful in the current objects. Onlyning if the member names are different. For the example

for objects which implement almost everything they getabove the mangled names for the two members functions
looked in for is the successful lookup number more im-|gok like this figurdb.

portant. In this category there are basically only two ob-

jects on a Linux system: the C library and the dynamicin the new mangling scheme used in today’s gcc versions
linker itself. and all other compilers which are compatible with the
common C++ ABI the names start with the namespaces
Some versions of theadelf program compute the value and class names and end with the member names. Fig-
directly and the output is similar to figurgs 3 drjd 4. Theure[g shows the result for the little example. The mangled
data in these examples shows us a number of things. Basggines for the two member functions differs only after the
on the number of symbols (2027 versus 106) the chosen3d character. This is really bad performance-wise if the
table size is radically different. For the smaller table thetwo symbols should fall into the same hash bufet.
linker can afford to “waste” 53.9% of the hash table en-
tries which contain no data. That's only 412 bytes onAda has similar problems. The standard Ada library for
a gABI-compliant system. If the same amount of over-gcc has all symbols prefixed withta_, then the pack-
head would be allowed for thidc.so binary the table age and sub-package names, followed by function name.
would be 4 kilobytes or more larger. That is a big dif- FiguregT shows a short excerpt of the list of symbols from

ference. The linker has a fixed cost function integratedhe library. The first 23 character are the same for all the
which takes the table size into account. names.

The increased relative table size means we have signififhe length of the strings in both mangling schemes is
cantly shorter hash chains. This is especially true for theyorrisome since each string has to be compared com-
average chain length for an unsuccessful lookup. The avpletely when the symbol itself is searched for. The names
erage for the small table is only 28% of that of the largein the example are not extra ordinarily long either. Look-
table. ing through the standard C++ library one can find many
names longer than 120 characters and even this is not the
What these numbers should show is the effect of reductongest. Other system libraries feature names longer than
ing the number of symbols in the dynamic symbol ta-200 characters and complicated, “well designed” C++
ble. With significantly fewer symbols the linker has a projects with many namespaces, templates, and nested
much better chance to counter the effects of the subopticlasses can feature names with more than 1,000 charac-
mal hashing function. ters. One plus point for design, but minus 100 points for
performance.

Another factor in the cost of the lookup algorithm is con- o | 4 Wh o the back?". Think

; ; ; : _ “Some people suggested “Why not search from the back?”. Thin
nec.ted Wlth the strings themselves. Slmpl_e string com bout it, these are C strings, not PASCAL strings. We do not know the
parison Is used on the. Symbo_' names which are storeglngih and therefore would have to read every single character of the
in a string table associated with the symbol table datatring to determine the length. The result would be worse.

Ulrich Drepper Version 3.0 7

___Q214some_namespace22some_longer_class_namei
the_getter_function__Q214some_namespace22some_longer_class_name

Figure 5: Mangled names using pre-gcc 3 scheme

_ZN14some_namespace22some_longer_class_nameC1Ei
_ZN14some_namespace22some_longer_class_namel9the_getter_functionEv

Figure 6: Mangled names using the common C++ ABI scheme

ada__calendar__delays___elabb
ada__calendar__delays__timed_delay_nt
ada__calendar__delays__to_duration

Figure 7: Names from the standard Ada library

With the knowledge of the hashing function and the de-bols’, ‘length of the symbol strings’, ‘number and length

tails of the string lookup let us look at a real-world exam- of common prefixes’,'number of DSOs’, and ‘hash table

ple: OpenOffice.org. The package contains 144 separatgize optimization’ can reduce the costs dramatically. In

DSOs. During startup about 20,000 relocations are pergeneral the percentage spent on relocations of the time

formed. The number of string comparisons needed durthe dynamic linker uses during startup is around 50-70%

ing the symbol resolution can be used as a fair value foif the binary is already in the file system cache, and about

the startup overhead. We compute an approximation 020-30% if the file has to be loaded from d$kt is there-

this value now. fore worth spending time on these issues and in the re-
mainder of the text we will introduce methods to do just

The average chain length for unsuccessful lookup in althat. So far to remember: pas3®l to the linker to gener-

DSOs of the OpenOffice.org 1.0 release on IA-32 is 1.193te the final product.

This means for each symbol lookup the dynamic linker

has to p_erform on average x 1.1931 = 85.9032 string 153 Lookup Scope

comparisons. For 20,000 symbols the total is 1,718,064

string comparisons. The average length of an exported

symbol defined in the DSOs of OpenOffice.orgiis13. The lookup scope has so far been described as an ordered

Even if we are assuming that only 20% of the string islist of most loaded object. While this is correct it has also

searched before finding a mismatch (which is an opti-been intentionally vague. It is now time to explain the

mistic guess since every symbol name is compared conlookup scope in more detail.

pletely at least once to match itself) this would mean a to-

tal of more then 18.5 million characters have to be loadedrhe lookup scope consists in fact of up to three parts.

from memory and compared. No wonder that the startuprhe main part is the global lookup scope. It initially

is so slow, especially since we ignored other costs. consists of the executable itself and all its dependencies.
The dependencies are added in breadth-first order. That

To compute number of lookups the dynamic linker per-means first the dependencies of the executable are added

forms one can use the help of the dynamic linker. If thein the order of theiDT.NEEDEL2ntries in the executable’s

environment variablé. D.DEBUGIS set tosymbols one dynamic section. Then the dependencies of the first de-

only has to count the number of lines which start with pendency are added in the same fashion. DSOs already

symbol= . It is best to redirect the dynamic linker’s out- loaded are skipped; they do not appear more than once

put into a file with LD_DEBUGOUTPUT The number of on the list. The process continues recursively and it will

string comparisons can then be estimate by multiplyingstop at some point since there are only a limited number

the count with the average hash chain length. Since thef DSOs available. The exact number of DSOs loaded

collected output contains the name of the file which isthis way can vary widely. Some executables depend on

looked at it would even be possible to get more accurat@nly two DSOs, others on 200.

results by multiplying with the exact hash chain length

for the object. If an executable has theF SYMBOLICflag set (see sec-
tion[2.2.T) the object with the reference is added in front

Changing any of the factors ‘number of exported sym- o
5These numbers assume pre-linking is not used.

8 Version 3.0 How To Write Shared Libraries

of the global lookup scope. Note, only the object with global scope like this:

the reference itself is added in front, not its dependen-

cies. The effects and reasons for this will be explained . . .
later. app — libone.so — libdl.so — libc.so
A more complicated modification of the lookup scope If now libtwo.so is loaded, the additional local scope
happens when DSOs are loaded dynamic usiogen . could be like this:

If a DSO is dynamically loaded it brings in its own set
of dependencies which might have to be searched. These
objects, starting with the one which was requested in the
dlopen call, are appended to the lookup scope if the

object with the reference is among those objects whichrhjs |ocal scope is searched after the global scope, pos-

have been loaded lyopen . That means, those objects sjply with the exception ofibdynamic.so which is

are not added to the global lookup scope and they argearched first for lookups in this very same DSO if the

not searched for normal lookups. This third part of thepr pynaMICHiag is used. But what happens if the sym-

lookup scope, we will call it local lookup scope, is there- po| duplicate s required inlibdynamic.so ~ ? After

fore dependent on the object which has the reference. a|| we said so far the result is always: the definition in
libone.so is found sincdibtwo.so s only in the lo-

The behavior otilopen can be changed, though. If the ca| scope which is searched after the global scope. If the

function gets passed tHRTLD.GLOBALflag, the loaded two definitions are incompatible the program is in trou-
object and all the dependenciese added to the global pje.

scope. This is usually a very bad idea. The dynami-

cally added objects can be removed and when this haprhis can be changed with a recent enough GNU C library
pens the |OOkUpS of all other ObJeCtS is influenced. Thq:)y ORingRTLDﬁDEEPB|NDtO the f|ag word passed as the
entire global lookup scope is searched before the dynansecond parameter tdlopen . If this happens, the dy-
ically loaded object and its dependencies so that defininamic linker will search the local scope before the global
tions would be found first in the global lookup scope ob-scope for all objects which have been loaded by the call
jeCt before definitions in the local IOOkUp Scope. If the to d|0pen . For our examp|e this means the search or-
dynamic linker does the lookup as part of a relocationger changes for all lookups in the newly loaded DSOs
this additional dependency is usually taken care of autofihdynamic.so andlibtwo.so , but not forlibc.so
matically, but this cannot be arranged if the user l00ks Upsince this DSO has already been loaded. For the two af-
symbols in the lookup scope wittsym . fected DSOs a referencedaplicate will now find the

definition inlibtwo.so . In all other DSOs the definition
And usually there is no reason to URELDGLOBAL FOr inlibone.so would be found.

reasons explained later it is always highly advised to cre-

ate dependencies with all the DSOs necessary to resolMg/hile this might sound like a good solution for handling
all referencesRTLD.GLOBALIs often used to provide im- - compatibility problems this feature should only be used

plementations which are not available at link time of ajf jt cannot be avoided. There are several reasonse for
DSO. Since this should be avoided the need for this flaghijs:

should be minimal. Even if the programmer has to jump
through some hoops to work around the issues which are

libdynamic.so — libtwo.so — libc.so

solved byRTLD.GLOBALIt is worth it. The pain of debug- e The change in the scope affects all symbols and all
ging and working around problems introduced by adding the DSOs which are loaded. Some symbols might
objects to the global lookup scope is much bigger. have to be interposed by definitions in the global

scope which now will not happen.
The dynamic linker in the GNU C library knows since
September 2004 one more extension. This extension helps ¢
to deal with situations where multiple definitions of sym-
bols with the same name are not compatible and there-
fore cannot be interposed and expected to work. This is
usally a sign of design failures on the side of the peo- e LD_PRELOADS ineffective for lookups in the dy-

Already loaded DSOs are not affected which could
cause unconsistent results depending on whether
the DSO is already loaded (it might be dynamically
loaded, so there is even a race condition).

ple who wrote the DSOs with the conflicting definitions namically loaded objects since the preloaded ob-
and also failure on the side of the application writer who jects are part of the global scope, having been added
depends on these incompatible DSOs. We assume here right after the executable. Therefore they are looked
that an applicatioapp is linked with a DSQibone.so at only after the local scope.

which defines a symbaluplicate and that it dynami- o) .

cally loads a DSQibdynamic.so which depends on o Applications might expect that Io_cg! deflnltlo_ns are
another DSQlibtwo.so which also defines a symbol always preferre_d over other definitions. This (and
duplicate . When the application starts it might have a the previous point) is already partly already a prob-

lem with the use oDF.SYMBOLICbut since this

Ulrich Drepper Version 3.0 9

flag should not be used either, the arguments aref the location in the GOT relative to the PIC register
still valid. value ¢ebx) is known at link-time. Therefore the text

) o) segment does not have to be changed, only the @OT.
o If any of the implicitly loaded DSOs is loaded ex-

plicitly afterward, its lookup scope will change. The situation for the function call is similar. The function

o Lastly, the flag is not portable. bar is not called directly. Instead control is transferred
to a stub fomar in the PLT (indicated bypar@PLT). For
IA-32 the PLT itself does not have to be modified and can
The RTLD.DEEPBINDflag should really only be used as be placed in a read-only segment, each entry is 16 bytes
a last resort. Fixing the application to not depend on then size. Only the GOT is modified and each entry consists
flag’s functionality is the much better solution. of 4 bytes. The structure of the PLT in an IA-32 DSO
looks like this:

154 GOT and PLT

.PLTO:pushl 4(%ebx)

The Global Offset Table (GOT) and Procedure Linkage D o)
Table (PLT) are the two data structures central to the EL hop; nop
run-time. We will introduce now the reasons why they nop; nop

. .PLTL:jmp *namel@GOT(%ebx)
are used and what consequences arise from that. pushl $offset1

. _ jmp .PLTO@PC
Relocations are created for source constructs like PLT2;jmp *name2@GOT (%ebx)
pushl $offset2

. jmp .PLTO@PC
extern int foo;

extern int bar (int);
int call_bar (void) {

BN (2 (508 This shows three entries, there are as many as needed,

all having the same size. The first entry, labeled with
.PLTO, is special. It is used internally as we will see.
All the following entries belong to exactly one function
The call tobar requires two relocations: one to load the Symbol. The first instruction is an indirect jump where
value offoo and another one to find the addresbar . the address is taken from a slot in the GOT. Each PLT en-
If the code would be generated knowing the addresses dfy has one GOT slot. At startup time the dynamic linker
the variable and the function the assembler instructiondills the GOT slot with the address pointing to the sec-

would directly load from or jump to the address. For IA- ond instruction of the appropriate PLT entry. l.e., when
32 the code would look like this: the PLT entry is used for the first time the jump ends at

the following pushl instruction. The value pushed on

the stack is also specific to the PLT slot and it is the off-
pushl foo set of the relocation entry for the function which should
call bar be called. Then control is transferred to the special first
PLT entry which pushes some more values on the stack
and finally jumps into the dynamic linker. The dynamic
) linker has do make sure that the third GOT slot (offset
This WF)Uld enpod(_a the addressesaf andbar as part . 8) contains the address of the entry point in the dynamic
of the instruction in the t_ex_t segment. If the address 'Sinker. Once the dynamic linker has determined the ad-
only known to th_e_ dynamic Injker the text ;egment WOUIddress of the function it stores the result in the GOT entry
have to be mOd'f,'ed at run-tlmg. According to what we which was used in thinp instruction at the beginning of
learned above this must be avoided. the PLT entry before jumping to the found function. This

) ._has the effect that all future uses of the PLT entry will not
Th.erefore the code generatgd for DSOs, i.e., when “S'”go through the dynamic linker, but will instead directly
fpic or-PIC , looks like this: transfer to the function. The overhead for all but the first
call is therefore “only” one indirect jump.

}

movl foo@GOT(%ebx), %eax) . L
pushl (%eax) The PLT stub is always used if the function is not guaran-

call bar@PLT teed to be defined in the object which references it. Please
note that a simple definition in the object with the refer-

5There is one more advantage of using this scheme. If the instruc-

. . . tion would be modified we would need one relocation per load/store
The address of the variabieo is now not part of the in- jnstruction. By storing the address in the GOT only one relocation is

struction. Instead it is loaded from the GOT. The addresseeded.

10 \ersion 3.0 How To Write Shared Libraries

ence is not enough to avoid the PLT entry. Looking atlinear process. Like all sorting algorithms the run-time is
the symbol lookup process it should be clear that the defat least Qn log n) and since this is actually a topological
inition could be found in another object (interposition) sort the value is even higher. And what is more: since
in which case the PLT is needed. We will later explainthe order at startup need not be the same as the order
exactly when and how to avoid PLT entries. at shutdown (when finalizers have to be run) the whole
process has to be repeated.
How exactly the GOT and PLT is structured is architecture-
specific, specified in the respective psABI. What was saidSo we have again a cost factor which is directly depend-
here about 1A-32 is in some form applicable to someing on the number of objects involved. Reducing the
other architectures but not for all. For instance, while thenumber helps a bit even though the actual costs are nor-
PLT on IA-32 is read-only it must be writable for other mally much less than that of the relocation process.
architectures since instead of indirect jumps using GOT
values the PLT entries are modified directly. A readerAt this point it is useful to look at the way to correctly
might think that the designers of the IA-32 ABI made a write constructors and destructors for DSOs. Some sys-
mistake by requiring a indirect, and therefore slower, calltems had the convention that exported functions named
instead of a direct call. This is no mistake, though. Hav-init and_fini are automatically picked as constructor
ing a writable and executable segment is a huge securitgnd destructor respectively. This convention is still fol-
problem since attackers can simply write arbitrary coddowed by GNU Id and using functions with these names
into the PLT and take over the program. We can anyhowon a Linux system will indeed cause the functions used
summarize the costs of using GOT and PLT like this: in these capacities. But this is totally, 100% wrong!

e every use of a global variable which is exported By us.in.g. thesg functions the programmer ovgrwrites what-
uses a GOT entry and loads the variable values inc el _|n|t|al!zat|o_n and destructlo_n funcUonahty th? sys-
directly: tem !ts_e_lf is using. '!'he result is a DSO which is not

fully initialized and this sooner or later leads to a catas-

e each function which is called (as opposed to refer-trophy. The correct way of adding constructors and de-
enced as a variable) which is not guaranteed to betructors is by marking functions with tlzenstructor
defined in the calling object requires a PLT entry. anddestructor ~ function attribute respectively.

The function call is performed indirectly by trans-
ferring control first to the code in the PLT entry

which in turn calls the function. void

__attribute ((constructor))
e for some architectures each PLT entry requires ¢ init_function (void)
least one GOT entry.

}
Avoiding a jump through the PLT therefore removes or

IA-32 16 bytes of text and 4 bytes of data. Avoiding the void

GOT when accessing a global variable saves 4 bytes __attribute ((destructor))
data and one load instruction (i.e., at least 3 bytes of coc fini_function (void)

and cycles during the execution). In addition each GO {

entry has a relocation associated with the costs describ

above.

1.5.5 Running the Constructors
These functions should not be exported either (see sec-
ions[2.2.2 and 2.2]3) but this is just an optimization.

. i
Once the relocations are performed the DSOs and the a;%A-/.)
plication code can actually be used. But there is one mor ith the functions defined like this the runtime will ar-

thing to do: optionally the DSOs and the application mus rangehtrltat the_y.?r?_ catllled _at the right tlmbe]: aiter perform-
be initialized. The author of the code can define for eactd Whatever initialization 1s necessary betore.
object a number of initialization functions which are run

before the DSO is used by other code. To perform the ini- -6 Summary of the Costs of ELF

tialization the functions can use code from the own object

and all the dependencies. To make this work the dynamigye have now discussed the startup process and how it is
linker must make sure the objects are initialized in theaffected by the form of the binaries. We will now summa-
.co.r.relf:t orderf, |.e.,hthe dgpendenmes of an object must bﬁ'ze the various factors so that we later on can determine
initialized before the object. the benefits of an optimization more easily.

To guarantee that the dynamic linker has to perform a
topological sort in the list of objects. This sorting is no Code Size As everywhere, a reduced size for code with

Ulrich Drepper Version 3.0 11

$ env LD_DEBUG=statistics /bin/fecho '+++ some text +++'

run-time linker statistics:
total startup time in dynamic loader: 748696 clock cycles
time needed for relocation: 378004 clock cycles (50.4%)
number of relocations: 133
number of relocations from cache: 5
time needed to load objects: 193372 clock cycles (25.8%)
+++ some text +++

run-time linker statistics:

final number of relocations: 188
final number of relocations from cache: 5

Figure 8: Gather Startup Statistics

the same semantics often means higher efficiencyjNumber of Symbols The number of exported and unde-
and performance. Smaller ELF binaries need less fined symbols determines the size of the dynamic

memory at run-time. symbol table, the hash table, and the average hash
In general the programmer will always generate the table chain length. The normal symbol table is not
best code possible and we do not cover this further. ~ Used at run-time and it is therefore not necessary
But it must be known that every DSO includes a to strip a binary of it. It has no impact on perfor-
certain overhead in data and code. Therefore fewer mance.
DSOs means smaller text. Additionally, fewer exported symbols means fewer
Number of Objects The fact that a smaller number of chances for conflicts when using pre-linking (not
objects containing the same functionality is bene- covered further).

ficial has been mentioned in several places: _
Length of Symbol Strings Long symbol lengths cause

e Fewer objects are loaded at run-time. This often unnecessary costs. A successful lookup of a
directly translates to fewer system call. In the symbol must match the whole string and compar-
GNU dynamic linker implementation loading ing dozens or hundreds of characters takes time.
aDSO requires 8 system calls, all of them can Unsuccessful lookups suffer if common prefixes
be potentially quite expensive. are long as in the new C++ mangling scheme. In

e Related, the application and the dependencies ~ any case do long symbol names cause large string
with additional dependencies must record the tables which must be present at run-time and thereby
names of the dependencies. This is not a ter- is adding costs in load time and in use of address
ribly high cost but certainly can sum up if space which is an issue for 32-bit machines.

there are many dozens of dependencies.
The lookup scope grows. This is one of the Number of Relocations Processing relocations constitute

the majority of work during start and therefore any

dominating factors in cost equation for the re- APy !
reduction is directly noticeable.

locations.

e More objects means more symbol tables whic
in turn normally means more duplication. Un-
defined references are not collapsed into one
and handling of multiple definitions have to
be sorted out by the dynamic linker.

Moreover, symbols are often exported from a
DSO to be used in another one. This would p
not have to happen if the DSOs would be merge

rI]<ind of Relocations The kind of relocations which are
needed is important, too, since processing a rela-
tive relocation is much less expensive than a nor-
mal relocation. Also, relocations against text seg-
ments must be avoided.

?cement of Code and DataAll executable code should
* be placed in read-only memory and the compiler

e The Sorting of initializerS/finalizerS iS more norma”y makes sure this is done Correcﬂy. When
complicated. creating data objects it is mostly up to the user

e In general does the dynamic linker have some to make sure it is placed in the correct segment.
overhead for each loaded DSO per process. Ideally data is also read-only but this works only
Every time a new DSO is requested the list of for constants. The second best choice is a zero-
already loaded DSOs must be searched which initialized variable which does not have to be ini-
can be quite time consuming since DSOs can tialized from file content. The rest has to go into
have many aliases. the data segment.

12 \ersion 3.0 How To Write Shared Libraries

In the following we will not cover the first two points across successive runs of the program. The time mea-
given here. It is up to the developer of the DSO to de-surements not. Even in a single-user mode with no other
cide about this. There are no small additional changes tprograms running there would be differences since the
make the DSO behave better, these are fundamental deache and main memory has to be accessed. It is there-
sign decisions. We have voiced an opinion here, whethefore necessary to average the run-time over multiple runs.
it is has any effect remains to be seen.
Itis obviously also possible to count the relocations with-
1.7 Measuringld.so Performance out running the program. Runningadelf -d on the
binary shows the dynamic section in which theRELSZ
o o _ DT.RELENT DT.RELCOUNJandDT_PLTRELSZentries are
To perform the optimizations it is useful to quantify the jnteresting. They allow computing the number of normal
effect of the optimizations. Fortunately it is very easy t0 44 relative relocations as well as the number of PLT en-

do this with glibc’s dynamic linker. Using theD DEBUG tyjes. If one does not want to do this by hand téiafo
environment variable it can be instructed to dump i”'script in appendik A can be used.

formation related to the startup performance. Figgre 8
shows an example invocation, of tlkeeho program in

this case. 2 Optimizations for DSOs

The output of the dynamic linker is divided in two parts.
The part before the program’s output is printed right be-In this section we describe various optimizations based
fore the dynamic linker turns over control to the appli- on C or C++ variables or functions. The choice of vari-
cation after having performed all the work we describedable or function, unless explicitly said, is made deliber-
in this section. The second part, a summary, is printedately since many of the implementations apply to the one
after the application terminated (normally). The actualor the other. But there are some architectures where func-
format might vary for different architectures. It includes tions are handled like variables. This is mainly the case
the timing information only on architectures which pro- for embedded RISC architectures like SH-3 and SH-4
vide easy access to a CPU cycle counter register (modenvhich have limitations in the addressing modes they pro-
IA-32, IA-64, x86-64, Alpha in the moment). For other vide which make it impossible to implement the function
architectures these lines are simply missing. handling as for other architectures. In most cases it is
no problem to apply the optimizations for variables and
The timing information provides absolute values for thefunctions at the same time. This is what in fact should be
total time spend during startup in the dynamic linker, thedone all the time to achieve best performance across all
time needed to perform relocations, and the time spendrchitectures.
in the kernel to load/map binaries. In this example the
relocation processing dominates the startup costs witffhe most important recommendation is to always use
more than 50%. There is a lot of potential for optimiza- -fpic or-fPIC when generating code which ends up in
tions here. The unit used to measure the time is CPUDSOs. This applies to data as well as code. Code which
cycles. This means that the values cannot even be conis not compiled this way almost certainly will contain text
pared across different implementations of the same arrelocations. For these there is no excuse. Text relocations
chitecture. E.g., the measurement for a Pentiuithand requires extra work to apply in the dynamic linker. And
a Pentiur* 4 machine will be quite different. But the argumentation saying that the code is not shared because
measurements are perfectly suitable to measure improvero other process uses the DSO is invalid. In this case it is
ments on one machine which is what we are interestediot useful to use a DSO in the first place; the code should
here. just be added to the application code.

Since relocations play such a vital part of the startup perSome people try to argue that the usefpfc /-fPIC
formance some information on the number of relocationson some architectures has too many disadvantages. This
is printed. In the example a total of 133 relocations areis mainly brought forward in argumentations about IA-
performed, from the dynamic linker, the C library, and the 32. Here the use dfeebx as the PIC register deprives
executable itself. Of these 5 relocations could be servethe compiler of one of the precious registers it could use
from the relocation cache. This is an optimization imple-for optimization. But this is really not that much of a
mented in the dynamic linker to handle the case of mulproblem. First, not havin@cebx available was never a
tiple relocations against the same symbol more efficientbig penalty. Second, in modern compilers (e.g., gcc after
After the program itself terminated the same informationrelease 3.1) the handling of the PIC register is much more
is printed again. The total number of relocations here idlexible. It is not always necessary to u&ebx which
higher since the execution of the application code causedan help eliminating unnecessary copy operations. And
a number, 55 to be exact, of run-time relocations to behird, by providing the compiler with more information as
performed. explained later in this section a lot of the overhead in PIC

can be removed. This all combined will lead to overhead
The number of relocations which are processed is stableshich is in most situations not noticeable.

Ulrich Drepper Version 3.0 13

When gcc is used, the optiorfpic /-fPIC also tellthe used at all times unless it is absolutely necessary to use

compiler that a number of optimizations which are pos--fPIC . The linker will fail and write out a message when

sible for the executable cannot be performed. This has tthis point is reached and one only has to recompile the

do with symbol lookups and cutting it short. Since the code.

compiler can assume the executable to be the first object

in the lookup scope it knows that all references of globalWhen writing assembler code by hand it is easy to miss

symbols known to be defined in the executable are reeases where position independent code sequences must

solved locally. Access to locally defined variable could be used. The non-PIC sequences look and actually are

be done directly, without using indirect access throughsimpler and more natural. Therefore it is extremely im-

the GOT. This is not true for DSOs: the DSOs can beportant to in these case to check whether the DSO is

later in the lookup scope and earlier objects might be in-marked to contain text relocations. This is easy enough

terposed. It is therefore mandatory to compile all codeto do:

which can potentially end up in a DSO witipic /-fPIC

since otherwise the DSO might not work correctly. There readelf -d binary | grep TEXTREL

is no compiler option to separate this optimization from

the generation of position-independent code. If this produces any output text relocations are present
and one better starts looking what causes them.

Which of the two options;fpic or -fPIC , have to be

used must be decided on a case-by-case basis. For sorfgl Data Definitions

architectures there is no difference at all and people tend

to be careless about the use. For most RISC there is a big

difference. As an example, this is the code gcc generategariables can be defined in C and C++ in several different

for SPARC to read a global variabjgobal when using ays. Basically there are three kinds of definitions:
-fpic

. ; Common Common variables are more widely used FOR-
sethi %hi(_ GLOBAL_OFFSET_TABLE_-4),%l7 TRAN but they got used in C and C++ as well to

call .LLGETPCO : : :
add %[7.%l0(GLOBAL_OFFSET TABLE. -+4) %I7 work around mistakes of programmers. Since in
the early days people used to drop ¢tern key-

Id %I 7+global],%g1 . o . .
Id {"/((;gl]%/ogl i word from variable definitions, in the same way it

is possible to drop it from function declaration, the
compiler often has multiple definitions of the same
variable in different files. To help the poor and

And this is the code sequencef®IC is used: clueless programmer the C/C++ compiler normally
generates common variables for uninitialized defi-
nitions such as

sethi %hi(_GLOBAL_OFFSET_TABLE_-4),%I7

call .LLGETPCO it foo;

add %I7,%lo(_ GLOBAL_OFFSET TABLE_+4),%I7 For common variables there can be more than one
sethi %hi(global),%g1 definition and they all get unified into one location
or %g1,%lo(global),%g1 in the output file. Common variables are always
Id [%17+%g1],%g1 initialized with zero. This means their value does
Id [%g1],%g1 not have to be stored in an ELF file. Instead the

file size of a segment is chosen smaller than the
memory size as described[inL.4.

In both casessl7 is loaded with the address of the GOT uUninitialized If the programmer uses the compiler com-
first. Then the GOT is accessed to get the address of mand line optionfno-common the generated code

global . While in the-fpic ~ case one instruction is suf- will contain uninitialized variables instead of com-
ficient, three instructions are needed in tf#C case. mon variables if a variable definition has no ini-
The-fpic option tells the compiler that the size of the tializer. Alternatively, individual variables can be
GOT does not exceed an architecture-specific value (8kB marked like this:

in case of SPARC). If only that many GOT entries can , ,

be present the offset from the base of the GOT can be int foo _-attribute ((nocommon));

encoded in the instruction itself, i.e., in the instruc- The result at run-time is the same as for common
tion of the first code sequence above.-fHIC is used variable, no value is stored in the file. But the rep-
no such limit exists and so the compiler has to be pes- resentation in the object file is different and it al-
simistic and generate code which can deal with offsets of lows the linker to find multiple definitions and flag
any size. The difference in the number of instructions in them as errors. Another difference is that it is pos-
this example correctly suggests that e~ should be sible to define aliases, i.e., alternative names, for

14 \ersion 3.0 How To Write Shared Libraries

uninitialized variables while this is not possible for numeric value zero. The test in the functiget _s has
common variables. to be changed as well but the resulting code is not less or

With recent gcc versions there is another method tg"nore efficient than the old code.

create uninitialized variables. Variables initialized
with zero are stored this way. Earlier gcc versions
stored them as initialized variables which took up
space in the file. This is a bit cumbersome for vari-
ables with structured types. So, sticking with the
per-variable attribute is probably the best way.

By simple transformations like that it is often possible
to avoid creating initialized variables and instead using
common or uninitialized variables. This saves disk space
and eventually improves startup times. The transforma-
tion is not limited to boolean values. It is sometimes pos-
sible to do it for variables which can take on more than
Initialized The variable is defined and initialized to a two values, especially enumeration values. When defin-
programmer-defined value. In C: ing enums one should always put the value, which is most

int foo = 42 often used as initializer, first in thenum definition. 1.e.

In this case the initialization value is stored in the
file. As described in the previous case initializa-
tions with zero are treated special by some compil-
ers.

enum { vall, val2, val3 h
should be rewritten as

enum { val3, vall, val2 }

Normally there is not much the user has to do to create

optimal ELF files. The compiler will take care of avoid- ;tovzljmrlrfatrrifevailluiz 2\?\/8; c;fterr;fléfggléotrolr;gzh\z/g?iggfés
ing the initializers. To achieve the best results even with X ys p

old compilers it is desirable to avoid explicit initializa- 2 uninitialized or initialized with zero as opposed to as

. . : . i initialized with a value other than zero.
tions with zero if possible. This creates normally com-

mon variables but if combined with gccfo-common

flag the same reports about multiple definitions one woulc?'2 Export Control
get for initialized variables can be seen.

When creating a DSO from a collection of object files the
dynamic symbol table will by default contain all the sym-
bols which are globally visible in the object files. In most
cases this set is far too large. Only the symbols which are
actually part of the ABI should be exported. Failing to
restrict the set of exported symbols are numerous draw-
backs:

There is one thing the programmer is responsible for. A
an example look at the following code:

bool is_empty = true;
char s[10];

const char *get_s (void) {
return is_empty ? NULL : s;

} e Users of the DSO could use interfaces which they
are not supposed to. This is problematic in revi-
sions of the DSO which are meant to be binary
compatible. The correct assumption of the DSO
developer is that interfaces, which are not part of
the ABI, can be changed arbitrarily. But there are
always users who claim to know better or do not
care about rules.

The functionget _s uses the boolean variakke _empty

to decide what to do. If the variable has its initial value

the variables is not used. The initialization value of

is _empty is stored in the file since the initialize is non-
zero. But the semantics &f _empty is chosen arbitrar-

ily. There is no requirement for that. The code could

: X According to the ELF lookup rules all symbols in
instead be rewritten as:

the dynamic symbol table can be interposed (un-
less the visibility of the symbol is restricted). l.e.,
definitions from other objects can be used. This
means that local references cannot be bound at link
time. If it is known or intended that the local defi-
const char *get_s (void) { nition shouldalwaysbe used the symbol in the ref-

return not_empty ? s : NULL; erence must not be exported or the visibility must
} be restricted.

bool not_empty = false;
char s[10];

e The dynamic symbol table and its string table are
available at run-time and therefore must be loaded.

Now the semantics of the control variable is reversed. It
is initialized withfalse which is guaranteed to have the

This can require a significant amount of memory,
even though it is read-only. One might think that

Ulrich Drepper Version 3.0

15

the size is not much of an issue but if one exam-done by defining it withstatic . This is for many peo-

ines the length of the mangled names of C++ vari-ple obvious but unfortunately not for all. Many consider

ables or functions, it becomes obvious that this isaddingstatic as optional. This is true when consider-

not the case. In addition we have the run-time costsng only the C semantics of the code.

of larger symbol tables which we discussed in the

previous section. If in our example neithelast or next are needed out-
side the file we can change the source to:

We will now present a number of possible solutions for
the problem of exported interfaces. Some of them solv
the same problem in slightly different ways. We will say
which method should be preferred. The programmer hé static int next (void) {
to make sure that whatever is used is available on the t¢ return ++last;

get system. }

static int last;

In the discussions of the various methods we will use on int index (int scale) {

example: } return next () << scale;
int last;
e Compiled in the same way as before we see that all the re-

return +Hast; locations introduced by our example code vanished. l.e.,

we are left with six relocations and three PLT entries. The
code to accedast now looks like this:

}

int index (int scale) {
return next () << scale;

}
movl last@GOTOFF(%ebx), %eax

incl %eax

movl %eax, last@GOTOFF(%ebx)
Compiled on a IA-32 Linux machine a DSO with only
this code (plus startup code etc) contains seven reloca-
tions, two of which are relative, and four PLT entries (use
therelinfo script). We will see how we can improve on The code improved by avoiding the step which loads the
this. Four of the normal and both relative relocations asaddress of the variable from the GOT. Instead, both mem-
well as three PLT entries are introduced by the additionaPry accesses directly address the variable in memory. At
code used by the linker to create the DSO. The actual extink-time the variable location has a fixed offset from the
ample code creates only one normal relocatioridsir PIC register, indicated symbolically bgst@GOTOFF.
and one PLT entry fonext . To increment and read the By adding the value to the PIC register value we get the
variablelast in next the compiler generates code like address ofast . Since the value is known at link-time

this construct does not need a relocation at run-time.

movl last@GOT(%ebx), %edx

The situation is similar for the call teext . The IA-32 ar-
movl (%edx), %eax

chitecture, like many others, know a PC-relative address-

incl - 9eax ing mode for | d calls. Therefore th il
Iy ing mode for jumps and calls. Therefore the compiler can
generate a simple jump instruction
and the call ohext is compiled to call next

call next@PLT

and the assembler generates a PC-relative call. The dif-

ference between the address of the instruction following
These code fragments were explained in se¢fion]1.5.4. thecall and the address abxt is constant at link-time
and therefore also does not need any relocation. Another
advantage is that, in the case of 1A-32, the PIC register
does not have to be set up before the jump. If the com-
piler wouldn’t know the jump target is in the same DSO
The easiest way to not export a variable or function is tothe PIC register would have to be set up. Other architec-
the define it file file-local scope. In C and C++ this is tures have similar requirements.

2.2.1 Usestatic

16 \ersion 3.0 How To Write Shared Libraries

The generated code is optimal. The compiler might eversymbol can accidentally be exported because an appro-
consider inlining some code if it finds that this is bene- priate declaration etc is missing. In some situations this
ficial. It is always advised that the programmer placescan prevent bad surpris@s.

the various variable and function definitions in the same

file as the references and then define the referenced ob- 3 Define Per-Symbol Visibility

jects asstatic . When generating the production bina-

ries it might even be desirable to merge as many input

files as possible together to mark as many objects as po4?stead of changing the default visibility the programmer
siblestatic . Unless one is comfortable with one giant ¢an choose to define to hide individual symbols. Or, if
file there is a limit on how many functions can be groupedthe default visibility is hidden, make specific symbols ex-
together. It is not necessary to continue the process ad irRortable by setting the visibility tdefault

finitum since there are other ways to achieve the same _)
result (minus inlining). Since the C language does not provide mechanisms to

define the visibility of a function or variable gcc resorts

) . once more to using attributes:
2.2.2 Define Global Visibility

int last

The next best thing to usingatic is to explicitly de- attribute__ ((visibility (*hidden")));

fine the visibility of objects in the DSO. The generic ELF

ABI defines visibility of symbols. The specification de- jnt

fines four classes of which here only two are of interes! __ attribute__ ((visibility ("hidden")))
STV.DEFAULTdenotes the normal visibility. The symbol next (void) {

is exported and can be interposed. The other interestir return ++last;

class is denoted bgTV.HIDDEN Symbols marked like '}

this are not exported from the DSO and therefore car ;

not be used from other objects. There are a number (It index (int scale) {
different methods to define visibility. } i el [s sels
Starting with version 4.0, gcc knows about a the com-

mand line optionvisibility . It takes a parameter

and the valid forms are these: This defines the variablast and the functiomext

as hidden. All the object files which make up the DSO
which contains this definition can use these symbols. I.e.,
e T v_vhil_e_static_ re_stricts the visibilit_y of a symbol tq t_h_e
visibility=internal flle it is defined in, the_hl_d_den attnbute_ limits the visibil-
fvisibility=protected ity to the DSO the definition ends up in. In the example
above the definitions are marked. This does not cause any
harm but it is in any case necessary to mark the declara-
tion. In fact it is more important that the declarations are

Only the first two should ever be used. The default ismarked appropriately since it is mainly the code gener-
unsurprisinglydefault ~ since this is the behavior of the ated for in a reference that is influenced by the attribute.

compiler before the introduction of this option. When . o)
visibility=hidden is specified gcc changes the de- Instead of adding an visibility attribute to each declara-

fault visibility of all defined symbols which have no ex- tion or definition, itis possible to change the default tem-
plicit assignment of visibility: all symbols are defined porarily for all definitions and declarations the compiler
with STV_.HIDDEN unless specified otherwise. This op- S€€S at this time. This is mainly useful in header files
tion has to be used with caution since unless the DSCFINCE it reduces changes to a minimum but can also be
is prepared by having all APIs marked as having defaultseful for_defmmons. Th_ls_compller featurg was also in-
visibility, the generated DSO will not have a single ex- troduced in gcc 4.0 and is implemented using a prefgma:
ported symbol. This is usually not what is wanted.

-fvisibility=default

#pragma GCC visibility push(hidden)

In general it is the preference of the author which decide int last:

whether-fvisibility=hidden should be used. If it

is not used, symbols which are not to be exported nee ju;
to be marked in one way or another. The next section
will go into details. In case the option is used all ex- ’Accidentally exporting symbol can mean that programs can use

ported functions need to be declared as having visibiIityfaorldb?ne;rgec‘ze;]‘gzgéﬁ’i?ytr:&:23” itis hard to remove the symbol again

default ~ which usually means the header files are sig- snote: 1S0 €99 introducedPragma which allows using pragmas
nificantly uglified. On the other hand it means that noin macros.

Ulrich Drepper Version 3.0 17

next (void) { compared for equality. This rule would be violated with a
return ++last; fast and simple-minded implementation of the protected
} visibility. Assume an application which references a pro-
#pragma GCC visibility pop tected function in a DSO. Also in the DSO is another
function which references said function. The pointer in
the application points to the PLT entry for the function
in the application’s PLT. If a protected symbol lookup
} would simply return the address of the function inside
the DSO the addresses would differ.

int index (int scale) {
return next () << scale;

))) In programming environments without this requirement
As in the example using the attributéast = andnext on function pointers the use of the protected visibility
are both defined with hidden visibility whiladex is \yoyId be useful and fast. But since there usually is only
defined with default visibility (assuming this is the de- one implementation of the dynamic linker on the sys-

fault currently in use). As the pragma syntax suggests, item and this implementation has to handle C programs
is possible to nest the pragmas with the expected result.5q well, the use of protected is highly discouraged.

In case thefvisibility=hidden command line op- There are some exceptions to these rules. It is possible
tion is used, individual symbols can be marked as €xyq create ELF binaries with non-standard lookup scopes.
portable by using the same syntax as presented in thigne simplest example is the usem# SYMBOLIC(or of
section, except withlefault in place ofhidden . In DT.SYMBOLICin old-style ELF binaries, see pafje] 24).
fact., the names of all four visibilities are allowed in the | these cases the programmer decided to create a non-
attribute or pragma. standard binary and therefore accepts the fact that the

))]) rules of the ISO C standard do not apply.
Beside telling the backend of the compiler to emit code to

flag the symbgl as hidden, changmg the visibility has an~ 5 4 Dpefine Visibility for C++ Classes
other purpose: it allows the compiler to assume the defi-
nition is local. This means the addressing of variables and
function can happen as if the definitions would be locallyFor C++ code we can use the attributes as well but they
defined in the file astatic . Therefore the same code have to be used very carefully. Normal function or vari-
sequences we have seen in the previous section can ble definitions can be handled as in C. The extra name
generated. Using the hidden visibility attribute is there-mangling performed has no influence on the visibility.
fore almost completely equivalent to usisggtic ; the The story is different when it comes to classes. The sym-
only difference is that the compiler cannot automaticallybols and code created for class definitions are member
inline the function since it need not see the definition. functions and static data or function members. These
variables and functions can easily be declared as hidden
We can now refine the rule for usirggatic : merge but one has to be careful. First an example of the syntax.
source files and mark as many functicgic as far as

one feels comfortable. In any case merge the files whic

contain functions which potentially can be inlined. In all
other cases mark functions (the declarations) which ai
not to be exported from the DSO as hidden.

Note that the linker will not add hidden symboils to the
dynamic symbol table. l.e., even though the symbol ta
bles of the object files contain hidden symbols they will
disappear automatically. By maximizing the number o
hidden declarations we therefore reduce the size of tf
symbol table to the minimum.

The generic ELF ABI defines another visibility mode:
protected. In this scheme references to symbols define
in the same object are always satisfied locally. But th
symbols are still available outside the DSO. This sound
like an ideal mechanism to optimize DSO by avoiding the
use of exported symbols (see secfion 2.2.7) but it isn”

class foo {
static int u __ attribute___
((visibility (“hidden")));
int a;
public:
foo (int b = 1);
void offset (int n);
int val () const __ attribute_
((visibility (“hidden™)));
3

int foo::u __ attribute
((visibility (“hidden")));

foo::foo (int b) : a (b) { }

void foo::offset (int n) { u = n; }

int

__attribute__ ((visibility ("hidden™)))

foo:ival () const { return a + u; }

Processing references to protected symbols is even more

expensive than normal lookup. The problem is a require-

ment in the ISO C standard. The standard requires thdn this example code the static data membeand the
function pointers, pointing to the same function, can bemember functiorval are defined as hidden. The sym-

18

\ersion 3.0

How To Write Shared Libraries

bols cannot be accessed outside the DSO the definitio
appear in. Please note that this isaaltlitionalrestriction
on top of the C++ access rules. For the member functior
one way around the problem is to instantiate the class i
more than one DSO. This is usually causing no problem
and “only” adds to code bloat.

Things are getting more interesting when static data mer
bers or static local variables in member functions are use
In this case there must be exactly one definition use
(please note: “used”, not “present”). To obey this rule
it is either necessary to not restrict the export of the stati
data member of member function from the DSO or to

foo (int b = 1);

int val () const __ attribute_
((visibility (“hidden™)));

void offset (int n);

h

class foo_ext :
public:
foo_ext (int b = 1) : foo (b) { }
void offset (int n)
{ return foo::offset (n); }

protected foo {

make sure all accesses of the data or function are made

in the DSO with the definitions. If multiple definitions The classioo is regarded as a private class, not to be
are present itis very easy to make mistakes when h|d|nglsed outside the DSO with the instantiation. The pUbllC
static data members or the member functions with statiénterface would be the classo _ext . It provides access
variables since the generated code has no way of knowintp the two public interfaces of the underlying class. As

that there are multiple definitions of the variables. Thislong as the users of the DSO containing the definitions

leads to very hard to debug bugs. respect the requirement that orftyp _ext can be used
there is no way for the compiler not noticing accesses to

Inthe examp|e code above the static data memligde- foo::u andfoo::val outside the DSO Containing the

clared hidden. All users of the member must be definedlefinitions.

in the same DSO. C++ access rules restrict access only to

member functions, regardless of where they are definedlémplate class and functions are not different. The syn-

To make sure all users are defined in the DSO with thdax is the same. Non-inline function definitions get yet

definition ofu it is usually necessary to avoid inline func- again less readable but that is something which can be

tions which access the hidden data since the inline genefnostly hidden with a few macros.

ated code can be placed in any DSO which contains co¢'~

using the class definition. The member functidiset template<class T>

is a prime example of a function which should be inlinec ¢lass a {

but since it accessesit cannot be done. Insteadfset T U

is exported as an interface from the DSO which contain public:

the definition ofu. a (T a=0)

T r () const __attribute___

If a member function is marked as hidden,vas is in ((visibility ("hidden")));

the example, it cannot be called from outside the DSC
Note that in the example the compiler allows global ac
cess to the member function since it is defined as a publ
member. The linker, not the compiler, will complain if
this member function is used outside the DSO with thq

template<class T> a<T>:a (T a)
{u=a}

template<class T> T
__attribute__ ((visibility ("hidden")))

instantiation. Inexperienced or not fully informed users
might interpret this problem as a lack of instantiation
which then leads to problems due to multiple definitions.

a<T>:r () const { return u; }

Because these problems are so hard to debug it is essefi?" mplatized classes the problems of making sure that
tial to get the compiler involved in making sure the userif Necessary only one definition is used is even harder to
follows the necessary rules. The C++ type system is ricix due to the various approaches to instantiation.

enough to help if the implementor puts some additional .)

effort in it. The key is to mimic the actual symbol access One sort of function which can safely be kept local and
as closely as possible with the class definition. For thig1ot exported are inline function, either defined in the class

reason the class definitions of the example above shoulfi€finition or separately. Each compilation unit must have
actually look like this: its own set of all the used inline functions. And all the

functions from all the DSOs and the executable better be
the same and are therefore interchangeable. It is possible
to mark all inline functions explicitly as hidden but this is

a lot of work. Since version 4.0 gcc knows about the op-
tion -fvisibility-inlines-hidden which does just
what is wanted. If this option is used a referenced in-
line function is assumed to be hidden and an out-of-line

class foo {
static int u __ attribute___
((visibility ("hidden")));
int a;
public:

Ulrich Drepper Version 3.0 19

copy of the function is marked withTV_.HIDDEN l.e., if = new declaration is not meant to be affected. Both, the
the function is not inlined the separate function created igpragma and the class attribute, should only be used in
not exported. This is a quite frequent situation at timesinternal headers. In the headers which are used to ex-
since not all functions the programmer thinks should bepose the API of the DSO it makes no sense to have them
inlined are eligible according to the compiler’'s analysis. since the whole point is to hide the implementation de-
This option is usable in almost all situations. Only if the tails. This means it is always a good idea to differentiate
functions in the different DSOs can be different or if the between internal and external header files.
code depends on exactly one copy of the function ever
being used (e.qg., if the function address is expected to bBefining entire classes with hidden visibility has some
the same) should this option be avoided. problems which cannot be modeled with sophisticated
class layout or moving the definition in private headers.
If a C++ class is used only for the implementation andFor exception handling the compiler generates data struc-
not used in any interface of a DSO using the code, theriures ¢ypeinfo symbols) which are also marked ac-
it would be possible to mark each member function andcording to the visibility attribute used. If an object of
static data element as hidden. This is cumbersome, errothis type is thrown theatch operation has to look for
prone, and incomplete, though. There is perhaps a largthe typeinfo information. If that information is in a
number of members which need to be marked and when different DSO the search will be unsuccessful and the
new member is added it is easy to forget about adding therogram will terminate. All classes which are used in
necessary attributes. The incompleteness stems from thexception handling and where tlieow andcatch are
fact that the C++ compiler automatically generates a fewnot both guaranteed to reside in the DSO with the defi-
members functions such are constructors and destructorsition must be declared with default visibility. Individual
These member functions would not be affected by thanembers can still be marked with an visibility attribute
attributes. but since thaypeinfo data is synthesized by the com-
piler on command there is no way for the programmer to
The solution to these problems is to explicitly determineoverwrite a hidden visibility attribute associated with the
the visibility of the entire class. Since version 4.0 doesclass.
gcc have support for this. There are two ways to achieve
the goal. First, the already mentioned pragma can b&he use of the most restrictive visibility possible can be
used. of big benefit for C++ code. Each inline function which
is (also) available as a stand-alone function, every syn-
thesized function are variable has a symbol associated
#pragma GCC visibility push(hidden) which is by default exported. For templatized classes this
class foo { is even worse, since each instantiated class can bring is
o many more symbols. It is best to design the code right
ipragma GCC visibility pop away so th_at the visibility a.t_tribut.es can be appli_ed when-
ever possible. Compatibility with older compilers can
easily be achieved by using macros.

All member functions and static data membersfaaf ~ 2.2.5 Use Export Maps
are automatically defined as hidden. This extends even to

implicitly generated functions and operators if Necessaryi ¢or one reason or another none of the previous two so-

U .. lutions are applicable the next best possibility is to in-
The second possibility is to use yet another extension iRtruct the linker to do something. Only the GNU and

gce 4.0. Itis possible to mark a function as hidden wheng ;4 i jinker are known to support this, at least with the

itis defined. The syntax s this: syntax presented here. Using export maps is not only

useful for the purpose discussed here. When discussing

maintenance of APIs and ABIs in chafftér 3 the same kind

of input file is used. This does not mean the previous two

methods should not be preferred. Instead, export (and

T symbol) maps can and should always be used in addition
to the other methods described.

class __attribute ((visibility ("hidden")))
foo {

The concept of export maps is to tell the linker explicitly
Just as with the pragma, all defined functions are defineavhich symbols to export from the generated object. Ev-
as hidden symbols. Explicitly using attributes should beery symbol can belong to one of two classes: exported or
preferred since the effect of the pragmas is not alwaysiot exported. Symbols can be listed individually, glob-
obvious. If thepush andpop lines are far enough from expressions can be used, or the speciahatch-all glob
each other a programmer might accidentally add a nevexpression can be used. The latter only once. The sym-
declaration in the range even though the visibility of this bol map file for our example code could look like this:

20 \ersion 3.0 How To Write Shared Libraries

{ {

global: index; global:
local: *; extern "C++" {
Ji foo*;
baz::baz*;
baz::s*
i
This tells the linker that the symbaidex is to be ex- local: *;
ported and all others (matched byare local. We could b
have listedast andnext explicitly in thelocal: list

but it is generally advised to always use the catch-all case
to mark all not explicity mentioned symbols as local.
This avoids surprises by allowing access only to the symThe use okxtern "C" tells the linker to match the fol-
bols explicitly mentions. Otherwise there would also belowing patterns with demangled C++ names. The first
the problem with symbols which are matched neither byentry foo* matches the first global function in the ex-
theglobal: nor by thelocal: , resulting in unspecified ample. The second entry matches the constructor(s) of
behavior. Another unspecified behavior is if a name apbaz and the third entry matches the functibaz::s
pears in both lists or is matched using globbing in bothNote that patterns are used in all cases. This is necessary
lists. sincefoo , baz::baz , andbaz:s are not the complete
names. The function parameter are also encoded in the
To generate a DSO with this method the user has to pagsangled name and must be matched. It is not possible to
the name of the map file with theversion-script match complete demangled C++ names since the current
option of the linker. The name of the option suggests thatinker implementation refuses to allow non-alphanumeric
the scripts can be used for more. We will get back to thischaracters. Using pattern might have unwanted effects.
when we discuss ABls in the next chapter. If there is another member function iz starting with
the letter ‘s’ it will also be exported. And one last odd-
ity should be mentioned: currently the linker requires that
$ gec -shared -o foo.so foo.c -fPIC \ there is no semicolon after the last entry in the C++ block.
-WI,--version-script=foo.map
Using export maps seems like a very desirable solution.
The sources do not have to be made less readable us-
ing attribute declarations or eventually pragmas. All the
knowledge of the ABI is kept locally in the export map
file. But this process has one fundamental problem: ex-
actly because the sources are not modified the final code

Itis of course also possible to use export maps with C++is not optimal. The linker is used only after the compiler

code. One has_two op_tlons in this case: explicitly namealready did its work and the once generated code cannot
the symbols using their mangled names, or rely on pat

tern matching for the mangled names. Using the manpe optimized significantly.

gleq names is stralght-forwarded. Just use the |dent|f|erﬁ1 our running example the compiler must generate the
as in the C ex.amples'. Using the dema_ngled Names T&yde for thenext function under the worst case sce-
quire _support n th.e linker. - Assume a file defining the nario assumption that the varialtdat is exported. This
following functions: means the code sequence usingOTORFhich was men-
tioned before cannot be generated. Instead the normal
two instruction sequence usi@GOMust be generated.

The filefoo.map is supposed to contain text like the one
shown above.

int foo (int a) { ... }
int bar (int a) { ... }

struct baz { This is what the linker will see when it gets instructed to
baz (int); hide the symbolast . The linker will not touch the ac-
int r () const; tual code. Code relaxation here would require substantial
int s (int); analysis of the following code which is in theory possi-
h ble but not implemented. But the linker will not generate

the normalR_386 _GLOBDAT relocation either. Since the
symbol is not exported no interposition is allowed. The
position of the local definition relative to the start of the

members should only export the functifmo and the de- yg|gcation.

structor(s) obaz andbaz::is . Anexport map to achieve
this could look like this: For function calls the result is often as good as it gets.
The code generated by the compiler for a PC-relative

Ulrich Drepper Version 3.0 21

jump and a jump through the PLT is identical. It is just linker, nor have any normal relocations been converted

the code which is called (the target function versus thento relative relocations.

code in the PLT) which makes the difference. The code

is only not optimal in one case: if the function call is the The only reason this method is mentioned here is that

only reason the PIC register is loaded. For a call to a locathere is hopdibtool ~ will learn about converting the

function this is not necessary and loading the PIC is jusexport lists into the anonymous version maps we have

a waste of time and code. seen in the previous section when the GNU linker is used.
At that pointlibtool will become useful. Until then

To summarize, for variables the use of symbol maps crerelying on its-export-symbols option is misleading

ates larger and less efficient code, adds an entry in that best.

GOT, and adds a relative relocation. For functions the

generated code sometimes contains unnecessary loads®b 7 Avoid Using Exported Symbols

the PIC. One normal relocation is converted into a rel-

ative relocation and one PLT entry is removed. This is o o))

one relative relocation worse than the previous methodsn SOme situations it might not be desirable to avoid ex-

These deficiencies are the reason why it is much prefef0rting a symbol but at the same time all local references

able to tell the compiler what is going on since after theshould use the Iocalldefimtlon. Thls also means that the

compiler finished its work certain decisions cannot be reUses of the symbols is cheaper since the less general code

verted anymore. sequences can be used. This is a subset of the problem
discussed so far. A solution needs a different approach
since so far we achieved the better code by not exporting

2.2.6 Libtool's -export-symbols only.

The fourth method to restrict symbol export is the leastSince @ symbol cannot be exported and not-exported at
desirable of them. It is the one used by the GNU Libtool the same time the basic approach is to use two names for
program when theexport-symbols option is used. the same variable or function. The two names then can
This option is used to pass to Libtool the name of a filebe treated differently. T_her_e are multiple possibilities to
which contains the names of all the symbols which shouldréate two names, varying in efficiency and effort.

be exported, one per line. The Libtool command line) o)
might look like this: At this point it is necessary to add a warning. By per-

forming this optimization the semantics of the program
changes since the optimization interferes with the sym-
$ libtool --mode=link gcc -o libfoo.la \ bol lookup rules. It is now possible to use more than one
foo.lo -export-symbols=foo.sym symbol with a given name in the program. Code out-
side the DSO might find a definition of a symbol some-
where else while the code in the DSO always uses the
local definition. This might lead to funny results. Of-
The filefoo.sym would contain the list of exported sym- ten it is acceptable since multiple definitions are not al-
bols. foo.lo is the special kind of object files Libtool lowed. A related issue is that one rule of ISO C can be
generates. For more information on this and other strangeiolated by this. 1ISO C says that functions are identified
details from the command line consult the Libtool man- by their names (identifiers) and that comparing the func-
ual. tion pointers one can test for equality. The ELF imple-
mentation works hard to make sure this rule is normally
Interesting for us here is the code the linker produces usebeyed. When forcing the use of local symbols code in-
ing this method. For the GNU linker Libtool converts the side and outside the DSO might find different definitions
-export-symbols option into the completely useless for a given name and therefore the pointers do not match.
-retain-symbols-file option. This option instructs Itis important to always consider these side effects before
the linker to prune the normal symbol tables, not the dy-performing the optimization.
namic symbol table. The normal symbol table will con-
tain only the symbols named in the export list file plus the
specialSTT_SECTIONsymbols which might be needed in \yrapper Functions Only applicable to functions, us-
relocations. All local symbols are gone. The problem ising wrappers (i.e. alternative entry points) is the most
that the dynamic symbol table is not touched at all andyortable but also most costly way to solve the problem.
this is the table which is actually used at runtime. If in our example code we would want to expartiex

.) . as well amext we could use code like this:
The effect of the usingibtool this way is that pro-

grams reading the normal symbol table (for instameg

do not find any symbols but those listed in the expor static int last;

list. And that is it. There are no runtime effects. Neither ; .
have any symbols been made unavailable for the dynam Stafic int next_int (void) {

22 \ersion 3.0 How To Write Shared Libraries

return ++last; This is quite a collection of non-standard gcc extensions

} to the C language so it might need some explanation. The
actual definitions of all three objects are the same as in the
int next (void) { original code. All these objects are exported. The differ-
return next_int (); ence in the definitions is thakext is using the internal
} aliaslast _int instead ofast and similarly forindex

. : andnext . What looks like two declarations is the mech-
I IE(E2R (lf SN o _ anism by which gcc is told about the aliases. It is basi-
return next_int () << scale; - . .

} cally anextern declaration of an object with the same
type (we use heretypeof to ensure that) which has an
alias added. Thalias attribute names the object this
is an alias of.

The functiomext . IShowa S|mplg wrapper arournd>.<t ‘Nt 76 achieve the results we want, namely that the aliases are

All calls to next .int are recognlged by the compﬂgr S not exported and that gcc gets told about this, we have

call_s toa I_ocal fgnctlon sinceext int , unllke_neXF 'S "to add the hidden visibility attribute. Looking back at

defined Wlt_hs'tatlc . Therefore no PLT entries is used sectiong Z.2]2 ar{d 2.2.3 it should be easy to see that the
forithe call inindex use of this attribute is equivalent.

Thg drawback of this method is that "?‘dd'“"”a' code is 1t the visibility attributes cannot be used for some reason
quired (the code for the nemext function) and that call-
ing next also minimally slower than necessary at run-
time. As a fallback solution, in case no other method
works, this is better than nothing.

almost the same code should be used, only leaving out
, visibility ("hidden")

This will create a normal alias with the same scope as the
original symbol. Using export maps the alias can then
be hidden. The resulting binary will not use the efficient

Using Aliases Introducing two names without adding ;e sequences (see secfion 2.2.5) but the local definition
code can be achieved by creating aliases for existing Ot\/'vill always be used

jects. Support for this is included in gcc; this does not

only include the creation of the alias, gcc also knows the .\ vantive reader might suggest that it is possible to

type for the alias and can perform appropriate tests WheQvoid some of the complications by writing the code for
the alias is used. The here goal is therefore to create Ayt like this:

alias and tell gcc and/or the linker to not export the sym-

bol. I.e., we apply the same techniques described in tt

previous sections now to an alias. The only difference i static int next_int (void) {

that defining an alias asatic ~ will not work. The best return ++last_int;

method therefore is to use visibility attributes. The othe } ;
previously discussed methods will also work but we d¢ €X€M __typeof (next_int) next
not go into the details for them here. — Al (@les (e mo);

If in our example we want to export bolist andnext

we can rewrite the example like this: As astatic ~ definition,next _int is not exported and el-
igible for inlining, while next is defined agxtern and
therefore exported. Even though this sometimes works

int last;
extern __ typeof (last) last_int
__attribute ((alias ("last"),

visibility (“hidden")));

int next (void) {
return ++last_int;
}
extern __ typeof (next) next_int
__attribute ((alias ("next"),
visibility (“hidden")));

int index (int scale) {
return next_int () << scale;

}

there is no guarantee it does all the time. The compiler
is allowed to use arbitrary symbol names fatic
functions and variables since the names are not part of
the ABI of the object file. This is necessary in some
situations to avoid name clashes. The result is that the
alias('next _int") part might fail to provide the cor-
rect symbol name and therefore the alias definition will
fail. For this reason it is mandatory to create alias only of
nonstatic ~ functions and variables.

For C++ programs defining aliases we also are also chal-
lenged by names. The problem is that the alias attribute
requires the assembler name of the defined symbol as a
string parameter. For C++ code this means the mangled
name. For simple C++ function we manage to get along

Ulrich Drepper

\ersion 3.0 23

with the same trick used in the C example. The advice here is toeveruse DF.SYMBOLIC It does
not improve the code, forces all symbols to be treated the
same, and can cause problems in symbol lookup. Itis

int mentioned here only for completeness and as a warning.
add (int a, int b)
{ 2.3 Shortening Symbol Names
return a + b;
}
extern __typeof (add) add_int The description of the ELF symbol lookup algorithm shows

__attribute ((alias ("_Z3addii"),

v g that one of the cost factors for the lookup is length of
visibility (“hidden")));

the symbols involved. For successful lookups the entire
string has to be matched and unsuccessful lookups re-
quire matching the common prefix of the involved strings.

There are only two tricky parts. The first is finding the : .

correct mangled name. For the locally used compiler it isThe flat namespace of the C programming environment
. 9 . " omp makes following the guideline to use short names easy.

quite easy to determine the name, just compile the cod

X . — r1"he names the programmer uses are directly mapped to
without the alias definition and look at the symbol table brog y mapp

of the generated file. Name manaling is unfortunatel names in the ELF file. The same is true for some other
€9 ' manging) yprogramming environments such as traditional Pascal and
traditionally not well standardized. There exist several

different name mangling schemes which means the aIiaEORTRAN'

string would have to be adjusted to the compiler which is

- Programming environments with more sophisticated sym-
used for the compilation. 9 9 P y

bol handling use name mangling. The most prominent
programming language in this class is C++. The sym-

The seconql problem is the usg,aﬁ/peof if the fL.mC' bol string of a function consists beside the function name
tion name is overloaded. In this case the compiler does

not know which of the potentially manv versions of the also of a description of the parameter list, the classes the
L pote y y function is a member of and the namespaces the class
function is meant and it bails out.

or function is defined in. This can lead to enormously
long symbol names. Names of more than 1,000 charac-
ters have been sighted in the wild. Ada names tend to get
DF_SYMBOLIC The original designers of the ELF for- very long because of the package namespace.
mat considered the possibility that preferring local def-
initions might be useful. They have included a mecha-The object and namespace model in C++ is used to man-
nism which can enforce this. If theF.SYMBOLICflag age the complexity of large projects and to facilitate code
is set in theDT_FLAGSentry of the dynamic section (or reuse. Therefore it is desirable keep symbol names un-
in older ELF binaries: if the dynamic section contains modified during the development process. But once a
anDT_SYMBOLICentry) the dynamic linker has to prefer program is to be deployed the long names become a nui-
local definitions. sance. This is when a person can step in and shorten the
names.
This approach has numerous disadvantages. First, all in-
terfaces are affected. The other approaches discusséad C++ the most critical classes are those with templates
here have a per-interface granularity. Treating all inter-and/or deeply nested namespaces and class definitions. If
faces like this is normally not the right way. The secondsuch classes are part of the interface of a DSO the pro-
disadvantage is that the compiler does not get told abougrammer should make a change. A shorter name for a
the use of local symbols and therefore cannot optimizeclass can be introduced by deriving publically a new class
the uses, just as if export maps would be used. And whafrom the class with the long name. The definition could
is even worse, calls to local functions still use the PLT en-be in the global scope to avoid the namespace part of the
tries. The PLT and GOT entries are still created and thenangled name. The symbols associated with this new
jump is indirect. This might be useful in some situationsclass can be exported, the original class’ names are not.
(e.g., when usinggD_PROFILE) but usually means a big, This does not remove the names of the original class from
missed opportunity for optimization. the non-dynamic symbol table but this table does not play
any role at run-time.
Finally the third problem is that the lookup scope is changed
in a way which can lead to using unexpected dependenthe wrapper class will have to redefine all non-virtual
cies. DFE.SYMBOLICeffectively puts the own object in member functions of the class itis helping to export. This
the first spot of its own lookup scope so that there areequires some work and it might add run-time costs by
a number of other DSO which are seen before the deperan additional function call, the one to the wrapper func-
dencies. This is nothing new but the fact that the DSCOtion. Note that defining those functions inline will not
marked withDF.SYMBOLICis in an unusual place can help since then the reference to the original, long name
cause unexpected versions from being picked up. is reintroduced. The only way to avoid the extra call is

24 \ersion 3.0 How To Write Shared Libraries

to define appropriate aliases, which might prove cumberif this is the case the code above is not optimal and wastes
some. resources. All that would be needed is the string itself. A
better definition would therefore be:
Shortening symbol names can be considered a micro-
optimization and certainly should not be performed pre
maturely. When keeping this optimization in mind dur-
ing the development it might be easy to implement anu
the possible benefits can be big. Memory operations are

slow and if the number of bytes which have to be loadedrys js something completely different than the code be-
can be reduced this definitely has measurable results. ;e Herestr is a name for a sequence of bytes which
contains initially the sequen¢some string” . By rewrit-
ing code in this way whenever it is possible we save one
pointer variable in the non-sharable data segment, and
)) o ~one relative relocation to initialize the variable with a
The selection of the right type can have significant im-pqinter to the string. Eventually the compiler is able to
pact on the performs, startup time, and size of & programyenerate better code since it is known that the value of

Most of the time it seems obvious what the right type o, can never change (the bytes pointed tosby can
is but alternatives are sometimes available and in Otheéhange).

cases it might be preferable to rearrange code slightly.
This section will provide a few concrete examples which

. 24.2 Foreverconst
by no means are meant to be a complete representation of
all the cases which can be optimized.

char str[] = "some string";

2.4 Choosing the Right Type

One nit still exists with the result in the last section: the
2.4.1 Pointers vs. Arrays string is modifiable. Very often the string will never be
modified. In such a case the unsharable data segment is

N -) unnecessarily big.
In some situations there is little or no difference between

pointers and arrays in C. The prototypes
const char str[] = "some string";

void scale (int arr[10], int factor)

After adding theconst keyword the compiler is able
to move the string in sharable read-only memory. This
and not only improves the program’s resource use and startup
speed, it also allows to catch mistakes like writing into
this string.
void scale (int *arr, int factor)
But that is not all. Modern gcc and linker versions can
work together to perform cross-object optimizations. l.e.,
strings which appear in more than one object file appear

are in fact mostly equivalent. So people got the impres<,, . ‘once in the final output. And even more: some link-

ston that thgre is never a difierence and one often findg, perform suffix optimizations, something which is pos-
code like this: sible with the string representation used in C. For this it
is necessary to realize that a string, which is the back-
part of a longer string (including the NUL byte), can be

char *str = "some string"; .
g represented by the bytes from the longer string.

const char sif]
const char s2]]

"some string";
"string"”;

This is correct and meaningful in some situations. A vari:
able isstr is created with an initial value being a pointer
to a string. This specific piece of code compiles fine with
some compilers but will generate a warning when com-
piled with gcc. More on that in the next section. In this case only the strintsome string" has to be
stored in the read-only data segment. The syrsbatan
The point to be made here is that the use of a variablde a reference to the fifth character of the longer string.
in this situation is often unnecessary. There might not be
an assignment tetr (note: not the string, the pointer To make this possible the compiler has to emit the string
variable). The value could be used only in 1/O, string data in specially marked section. The sections are marked
generation, string comparison or whatever. with the flagsSHEMERGERNASHFESTRINGS

Ulrich Drepper Version 3.0 25

Not all strings can be handled, though. If a string con
tains an explicit NUL byte, as opposed to the implicit static const char msgs[][17] = {

one at the end of the string, the string cannot be place [ERR1] = "message for errl",
in mergeable section. Since the linker’s algorithms us [ERR2] = "message for err2",
the NUL byte to find the end of the string the rest of the [ERR3] = "message for err3"

input string would be discarded. It is therefore desirabl; k
to avoid strings with explicit NUL bytes.

The result of this code is optimal. The arraygs is
placed entirely in read-only memory since it contains no
pointer. The C code does not have to be rewritten. The

Some data structure designs which work perfectly welidrawback of this solution is that it is not always applica-
in application code add significant costs when used irPle- If the strings have different lengths it would mean
DSOs. This is especially true for arrays of pointers. OneVasting quite a bit of memory since the second dimen-
example which shows the dilemma can be met frequentlyion of the array has to be that of the length of the longest
in well-designed library interface. A set of interfaces re- Stfing plus one. The waste gets even bigger if the values
turns error number which can be converted using anothefRRQ ERR1 andERR2are not consecutive and/or do not

function into strings. The code might look like this: start with zero. Every missing entry would mean, in this
case, 17 unused bytes.

2.4.3 Arrays of Data Pointers

There are other methods available for case which cannot

tati t char * = . .
static const char "msgsf] = { be handled as the example above but none without major

{Egg;} _ -.mgzzggg g gg code rewrit@ One possible solution for the problem is
[ERR3] = "message for err3" the following. This code is not as elegant as the original
|5 code but it is still maintainable. Ideally there should be a
tool which generates from a description of the strings the
const char *errstr (int nr) { appropriate data structures. This can be done with a few
return msgs|nr]; lines
}

static const char msgstr[] =
"message for err1\0"
The problematic piece is the definition mgs. msgs is iesEEgE 2 Gz
as defined here a variable placed in non-sharable, writak MESSERE O G
memory. It is initialized to point to three strings in read-
only memory (that part is fine). Even if the definition
would be written as

static const size_t msgidx[] = {
0,
sizeof ("message for errl"),
sizeof ("message for errl")
static const char *const msgs[] = { + sizeof ("message for err2")
=
(note the additioronst) this would not change this (but
it opens up some other opportunities, 2.6). The cor ~ const char *errstr (int nr) {
piler still would have the place the variable in writable return msgstr + msgidx[nr];
memory. The reason are three relative relocation whic }
modify the content of the array after loading. The tota.
cost for this code is three words of data in writable mem-

ory and three relocations modifying this data in addition h ¢ both i thi .
to the memory for the strings themselves. The content of both arrays in this code is constant at

compile time. The references tosgstr and msgidx

Whenever a variable, array, structure, or union, containd erstr also do not need relocations since the_deflm-
a pointer, the definition of an initialized variable requires tions gre known to b-e local. The cost of th!s codg_mclude
relocations which in turn requires the variable to be place{fI¢esize -t words in read-only memory in addition to

in writable memory. This along with the increased startupth® memory for the strings. 1.e., we lost all the reloca-

time due to processing of the relocations is not acceptabld©nS (and therefore startup costs) and moved the array
for code which is used only in error cases. from writable to read-only memory. In this respect the
code above is optimal.

Fora S|mple case asthe example above a solution entirely 91f we would write assembler code we could store offsets relative to

Wi_thin C can be used by rewriting the array definition like 4 pint in the DSO and add the absolute address of the reference point
this: when using the array elements. This is unfortunately not possible in C.

26 \ersion 3.0 How To Write Shared Libraries

For a more elaborate and less error-prone method of codarger. Compilers do not have problems with large func-
structing such tables is appenflix B. The presented codions and might even be able to optimize better. The
does not require the programmer to duplicate strings whigiroblem is only the programmer. The original code was

must be kept in sync. clean and intentionally written using function pointers.
The transformed code might be much less readable. This
2.4.4 Arrays of Function Pointers makes this kind of optimization one which is not per-

formed until the code is tested and does not need much
o .)) o maintenance anymore.
The situation for function pointers is very similar to that
of data pointers. If a pointer to a function is used in the A similar problem, though it (unfortunately) is rather rare
initialization of a global variable the variable the result today, arises for the use of computgato s, a gcc ex-
gets written to must be writable and non-sharable. Fokgnsion for C. Computedoto s can be very useful in
locally defined functions we get a relative relocation a”dcomputer-generated code and in highly optimized @de.

for functions undefined in the DSO a normal relocationThe previous example using computgdo s might look
which is not lazily performed. The question is how to |ike this:

avoid the writable variable and the relocations. Unfortu-
nately there is no generally accepted single answer. A™
be can do here is to propose a few solution. Our examp int add (int a, int b) {

code for this section is this: static const void *labels[] = {
&&a0, &&al, &&a2
static int a0 (int a) { return a + 0; } }é]oto *labels[b];
static int al (int a) { return a + 1; } ao:
static int a2 (int a) { return a + 2; } return a + O;
al:

static int (*fps[]) (int) = { return a + 1;

[0] = a0, a2:

[1] = a1, return a + 2;

[2] = a2 }
b

int add (int a, int b) {

} return; Tps{b] (a); How the code works should be obvious. The ataagls

contains pointers to the places in the function where the
labels are placed and theto s jumps to the place picked
out of the array. The problem with this code is that the ar-
A solution for this problem must inevitably be differ- '@y contains absolute address which require relative relo-
ent from what we did for strings where we combined all ¢ations ina DSO and which require that the atedgls
strings into one. We can do this for functions as well butiS Writable and placed in non-sharable memory.

it will look different:) o)) _
The above code in principal is an implementation of a

switch ~statement. The difference is that the compiler

int add (int a, int b) { never stores absolute addresses which would need relo-
switch (b) { cations of position-independent code is generated. In-
case 0 stead the addresses are computed relative to the PIC ad-

Ll dress, producing a constant offset. This offset then has

caset L .1 to be added to the PIC register value which is a minimal
Casrg u2m a ' amount of extra work. To optimize the code above a sim-
return a + 2: ilar scheme but be used.
}
} . : .
int add (int a, int b) {
static const int offsets[] = {
&&al-&&al, &&al-&&al, &&a2-&&ald
Inlining the code as in the code above should certainly b g
the preferred solution. The compiler never generates ri goto *(&&a0 + offsets{b]);

locations for the implementation ofsavitch statement
and therefore the whole code does not need any reloc
tion.

return a + O;
al:

o . o . 10|nterested readers might want to look atwfigrintf ~ implemen-
Inlining makes sense even if the inlined function are muchation in the GNU libc.

Ulrich Drepper Version 3.0 27

return a + 1; lookups have to be used. Using the visibility attributes

az2: was mentioned as a possibility to get relative relocations.
return a + 2; But since the virtual function table and the instantiated
} member functions are generated by the compiler adding

an attribute cannot be done without some dirty tricks. So
using linker version scripts is really the only possibility.

Since we do not have direct access to the PIC register &t even this is often not possible. The virtual functions
compile-time and cannot express the computations of thean pe called not only through the virtual function table
offsets we have to find another base address. In the codgyt also directly if the compiler can determine the exact
above it is simply one of the target address#s, The type of an C++ object. Therefore virtual function in most
arrayoffsets s in this case really constant and placed cases have to be exported from the DSO. For instance,

in read-only memory since all the offsets are known onc&he virtual function in the following example is called di-
the compiler finished generating code for the function.rectly,

We now have relative addresses, no relocations are nec-
essary. The type used foffsets might have to be ad-

justed. If the differences are too large (only really pos:
sible for 64-bit architectures, and then only for tremen:
dously large functions) the type might have to be change
to ssize _t or something equivalent. In the other direc-
tion, if it is known that the offsets would fit in a variable

struct foo {
virtual int virfunc () const;
ji
foo var;
int bar () { return var.virfunc (); }

of type short or signed char , these types might be
used to save some memory.

The reason is thatar is known to have typdoo and
not a derived type from which the virtual function table
is used. If the clas®o is instantiated in another DSO
Virtual function tables, generated for C++ classes withnot only the virtual function table has to be exported by
member functions tagged withirtual , are a special that DSO, but also the virtual functiasrfunc

case. The tables normally involve function pointer which

cause, as seen above, the linker to create relocations. Ifta tiny runtime overhead is acceptable the virtual func-
is also worthwhile looking at the runtime costs of virtual tion and the externally usable function interface should
functions compared to intra- and inter-DSO calls. Butbe separated. Something like this:

first the relocation issues.

2.4.5 C++ Virtual Function Tables

[* In the header. */

struct foo {
virtual int virfunc () const;
int virffunc_do () const;

Usually the virtual function table consists of an array of
function pointers or function descriptors. These represel
tations have in common that for every slot in the virtual
function table there must be one relocation and all th
relocations have to be resolved at startup-time. Thert
fore having larger a number of virtual function tables ot
virtual function tables with many entries impact startug
time.

h

[* In the source code file. */

virtual int foo::virfunc () const

{ return virfunc_do (); }

int foo::virfunc_do () const

One other implication is noteworthy. Even though atrun: { ...do something... }

time normally only one virtual function table is used (sinc

the name is the same the first is in the lookup scope is

used) all tables must be initialized. The dynamic linker

has no possibility to determine whether the table will beln this case the real implementation of the function is in

used at some point or not and therefore cannot avoid inivirfunc _do and the virtual function just calls it. There

tializing it. Having exactly one virtual function table def- is no need for the user to call the virtual function di-

inition in all the participating DSOs is therefore not only rectly as in the functiorbar above sincevirfunc _do

useful for space conservation reasons. can be called instead. Therefore the linker version script
could hide the symbol for the virtual function and export

The cost of each relocation depends on whether the funcsrfunc _do to be called from other DSOs. If the user

tion being referenced is defined locally and whether itstill calls the virtual function the linker will not be able to

is exported or not. Only for functions which are explic- find a definition and the programmer has to know that this

itly hidden by using the visibility attributes or a version means she has to rewrite the code to usienc _do.

script can the linker use relative relocations which canThis makes using the class and the DSO a bit more com-

be processed quickly. Otherwise relocations with symboplex.

28 \ersion 3.0 How To Write Shared Libraries

The consequence of hiding the virtual function is that theis called very often? Even worse: what if the function

virtual function table slot fowirffunc can be handled getfoo would be defined static or hidden and no pointer

with a relative relocation. This is a big gain not only be- to it are ever available? In this case the caller might al-

cause this relocation type is much faster to handle. Sinceeady have computed the GOT address; at least on 1A-32

virtual function tables contain data references the relothe GOT address is the same for all functions in the DSO

cation of the virtual function table slots must happen ator executable. The computation of the GOT address in

startup time. foobar would be unnecessary. The key word in this sce-
nario description is “might”. The IA-32 ABI does not

The improved example above assumes that direct calleequire that the caller loads the PIC register. Only if a

are more frequent than calls through the virtual func-function calls uses the PLT do we know tita&bx con-

tion table since there is additional overhead (one extrdains the GOT address and in this case the call could come

function call) involved when callingirfunc . Ifthisas- from any other loaded DSO or the executable. I.e., we re-

sumption is wrong and calls through the virtual function ally always have to load the GOT address.

table are more frequent, then the implementations of the

two functions can be swapped. On platforms with better-designed instruction sets the gen-
erated code is not bad at all. For example, the x86-64

In summary, the number and size of virtual function ta-version could look like this:

bles should be kept down since it directly impacts startun

time behavior. If virtual functions cannot be avoided the

implementations of the functions should not be exportec getioo:

movl foo(%rip),%eax

ret
2.5 Improving Generated Code

On most p|atforms the code generated for DSOs differsThe x86-64 architecture provides a PC-relative data ad-
from code generated for applications. The code in DSO$lressing mode which is extremely helpful in situations
needs to be relocatable while application code can usuike this.
ally assume a fixed load address. This inevitably means
that the code in DSOs is slightly slower and probablyAnother possible optimization is to require the caller to
larger than application code. Sometimes this additionaload the PIC register. On IA-64 thgp register is used
overhead can be measured. Small, often called function®r this purpose. Each function pointer consist of a pair
fall into this category. This section shows some problemfunction address angp value. Thegp value has to be
cases of code in DSOs and ways to avoid them. loaded before making the call. The result is that for our

running example the generated code might look like this:
In the preceding text we have seen that for IA-32 a func-
tion accessing a global variable has to load determine tt getfoo:
address of the GOT to use ti@GOTOFBperation. As- addl r14=@gprel(foo),gp;;
suming this C code Id4 r8=[r14]

br.ret.sptk.many b0

static int foo;

int getfoo (void)

{ return foo; } If the caller knows that the called function uses the same
gp value, it can avoid the loading gbp. IA-32 is really a
special case, but still a very common one. So it is appro-
priate to look for a solution.

the compiler might end up creating code like this:

Any solution must avoid the PIC register entirely. We

propose two possible ways to improve the situation. First,

getfcéc;:" 1f do not use position-independent code. This will generate
1: popl %ecx code like
addl _GLOBAL_OFFSET_TABLE_][.-1b],%ecx
movl foo@GOTOFF(%ecx),%eax getfoo:
= movl foo,%eax
ret

The actual variable access is overshadowed by the over-
head to do so. Loading the GOT address intodfeex The drawback is that the resulting binary will have text
register takes three instructions. What if this functionrelocations. The page on which this code resides will

Ulrich Drepper Version 3.0 29

not be sharable, the memory subsystem is more stressé@ pure overhead since we can access global variables
because of this, a runtime relocation is needed, programwithout the GOT value. On IA-64 markingetfoo as
startup is slower because of both these points, and sectiidden would allow to avoid the PLT and therefore gipe

rity of the program is impacted. Overall, there is a mea-register is not reloaded during the callgetfoo . Again,
surable cost associated with not using PIC. This possibilthe parameter is pure overhead. For this reason it is ques-
ity should be avoided whenever possible. If the DSO istionable whether this |1A-32 specific optimization should
guestion is only used once at the same time (i.e., there amver be performed. If IA-32 is the by far most important
no additional copies of the same program or other proplatform it might be an option.

grams using the DSO) the overhead of the copied page is . .

not that bad. Only in case the page has to be evacuate#6 Increasing Security

from memory we would see measurable deficits since the

page cannot simply be discarded, it must be stored in the) o
disk swap storage. The explanation of ELF so far have shown the critical im-

portance of the GOT and PLT data structures used at run-
The second proposed solution has a bigger impact on théMe by the dynamic linker. Since these data structures
whole code. Assume this extended example: are used to direct memory access and function calls they

are also a security liability. If a program error provides

an attacker with the possibility to overwrite a single word

static int foo; in the address space with a value of his choosing, then
static int bar; targetting a specific GOT entry is a worthwhile goal. For
int getfoo (void) some architectures, a changed GOT value might redirect
{ return foo; } a call to a function, which is called through the PLT, to

int getboth (void)

T B e] an arbitrary other place. Similarly, if the PLT is modified

in relocations and therefore writable, that memory could
be modified.

If this code gets translated as is, both functions will loag”AN €xample with securit){ relevance could be a call to
the GOT address to access the global variables. This caiftuid 10 drop a process’ privileges which is redirected
be avoided by putting all variables in a struct and passin%0 perhapsgetpid . The attacker could therefore keep
the address of the struct to the functions which can use ithe raised priviledges and later cause greater harm.

For instance, the above code could be rewritten as: o o
This kind of attack would not be possible if the data GOT

and PLT could not be modified by the user program. For

static struct globals { some platforms, like 1A-32, the PLT is already read-only.
int foo; But the GOT must be modifiable at runtime. The dy-
int bar; namic linker is an ordinary part of the program and it
} globals; is therefore not possible to require the GOT in a mem-

static int intfoo (struct globals *g)

{ retum g->foo; } ory region which is writable by the dynamic linker but

i st () not the rest of the app!ica}tion. Another possibility would.

{ retumn intfoo(&globals); } bg to have the dynamic linker chapge the access permis-

int getboth (void) sions for th_e memory pages containing the GQT and PLT

{ return globals.bar+intfoo(&globals); } whenever it has to change a value. The required calls to
mprotect are prohibitively expensive, ruling out this so-
lution for any system which aims to be performing well.

The code generated for this example does not computét this point we should remember how the dynamic linker
the GOT address twice for each calldetboth . The works and how the GOT is used. Each GOT entry be-
functionintfoo uses the provided pointer and does notlongs to a certain symbol and depending on how the sym-
need the GOT address. To preserve the semantics of thml is used, the dynamic linker will perform the relo-
first code this additional function had to be introduced;cation at startup time or on demand when the symbol
it is now merely a wrapper arouriatfoo . If it is pos- is used. Of interest here are the relocations of the first
sible to write the sources for a DSO to have all globalgroup. We know exactly when all non-lazy relocation
variables in a structure and pass the additional parametare performed. So we could change the access permis-
to all internal functions, then the benefit on 1A-32 can besion of the part of the GOT which is modified at startup
big. time to forbid write access after the relocations are done.
Creating objects this way is enabled by tlerelro

But it must be kept in mind that the code generated for thdinker option. The linker is instructed to move the sec-
changed example is worse than what would be created fdfons, which are only modified by relocations, onto sep-
the original on most other architectures. As can be seergrate memory page and emit a new program header en-
in the x86-64 case the extra parameteinttoo would try PT.GNURELROt0 point the dynamic linker to these

30 \ersion 3.0 How To Write Shared Libraries

special pages. At runtime the dynamic linker can thensince there is no other thread available which could per-
remove the write access to these pages after it is done. form the attack while the pages are writable. The same is
not true if later, when the program already executes nor-
This is only a partial solution but already very useful. mal code and might have start threads, some DSOs are
By using the-z now linker option it is possible to dis- loaded dynamically withdlopen . For this reason cre-
able all lazy relocation at the expense of increased startugting DSOs with text relocation means unnecessarily in-
costs and make all relocations eligible for this specialcreasing the security problems of the system.
treatment. For long-running applications which are secu-
rity relevant this is definitely attractive: the startup costsMuch more critical is that with Security Enhanced Linux
should not weigh in as much as the gained security. Also(SELinux) text relocations become a big liability. By de-
if the application and DSOs are written well, they avoid fault, the SELinux extensions prevent making executable
relocations. For instance, the DSOs in the GNU C librarydata pages writable. Since the kernel cannot distinguish
are all build with-z relro and-z now . between the dynamic linker doing this and the program
or an attacker making the change, the abilities of the dy-
The GOT and PLT are not the only parts of the applica-namic linker are also restricted. The only ways out are
tion which benefit from this feature. In sectibn 2]4.2 weto grant the program permission to change the protection
have seen that adding as maoyist to a data objectdef- (and therefore give attackers the ability to do the same) or
inition as possible has benefits when accessing the datt remove text relocations from all DSOs and PIEs. The
But there is more. Consider the following code: former option should only be used as a last resort.

2.7 Simple Profiling of Interface Usage
const char *msgsl[] = {

I‘One", "tWOH, "three"

¥ . The dynamic linker in the GNU C library allows easy
C?nSt "ch"ar ,,COPSt m"5952|] =1 profiling of the way a DSO is used without recompiling
one", "two", "three " . .

¥ any code. By setting the value of the environment vari-

ableLD_PROFILE to the shared object name (SONAME)

of aDSO, all uses of interfaces defined in this DSO which

go through a PLT are recorded. In addition time-based
It has been explained that neither array can be movedampling happens as well and all samples which happen
into the read-only, and therefore shared, data section ifn the profiled DSO are recorded. This is all similar to the
the file is linked into a DSO. The addresses of the stringgprof -based profiling which is available on Unix sys-
pointed to by the elements are known only at runtime.tems for a long time.
Once the addresses are filled in, though, the elements of
msgs2 must never be modified again since the array it-The LD_PROFILE variable can be set for arbitrarily many
self is defined asonst . Therefore gcc stores the array applications running at the same time. All profiling activ-
msgsl in the .data section whilemsgs2 is stored into ity is recorded in real-time in the same output file which is
a section callecdata.rel . This.data.rel sectionis usually stored irvar/tmp . Without having to stop any
just like .data but the dynamic linker could take away or all applications currently profiled, the current status
write access after the relocations are done. The previean be examined by running tegrof program. The op-
ously described handling of the GOT is just a special caséions this program understands are similar to thypsef
of exactly this feature. Adding as manynst as possi- understand. There are basically three report types, call
ble together with thez relro linker option therefore pairs, flat profiles, and graph profiles which can all be
protects even program data. This might even catch bugsequested at once.
where code incorrectly modifies data declaredast .

How to use these profile results is specific to the applica-
A completely different issue, but still worth mentioning tion. It is easy to locate often called functions and, given
in the context of security, are text relocations. Generatsufficient runtime, functions inside the DSO which run
ing DSOs so that text relocations are necessary (see sefr a long time. Everybody who usegrof should feel
tion[4) means that the dynamic linker has to make memyight at home although DSO profiling has its limitations.
ory pages, which are otherwise read-only, temporarily
writable. The period in which the pages are writable isThe call data is accumulated by intercepting the calls
usually brief, only until all non-lazy relocations for the made through the PLT. The dynamic linker can do this
object are handled. But even this brief period could bewithout the application noticing it. But if the PLT is not
exploited by an attacker. In a malicious attack code re-used, data is not recorded. This is the case if an appli-
gions could be overwritten with code of the attacker’scation looks a symbol up usirgjsym and then calls it
choice and the program will execute the code blindly if it directly. This might make the profiling data useless.
reaches those addresses.

The solution for this problem is to use tb& CALL FCT
During the program startup period this is not possiblemacro the GNU C library’sdifcn.h> header defines.

Ulrich Drepper Version 3.0 31

If a looked-up function pointefctp has been used like time of the DSO. Maintaining ABI compatibility means
this that no definition, also called interface, gets lost. This is
only the easy part, though.
foo = fctp (argl, arg2);
For variable definitions it also means that the size and

or if you prefer structure of the variable does not change in a way the

application cannot handle. What this actually means de-

foo = (*fctp) (argl, arg2); pends on the situation. If any code outside the DSO di-
rectly accesses the variable, the accessed part of the struc-

the code should be rewritten to look like this: ture of the variable must not change. On platforms which
require copy relocations to handle accesses to variables

foo = DL _.CALLFCT (fctp, (argl, arg2)); defined in DSOs in the main application (such as 1A-32)

the size of the variable must not change at all. Otherwise
The DL.CALL FCT macro contains the necessary magicvariables might increase in size.
to record the calling of the function pointed to fayp .
If the DSO which contains the symbol is not profiled The requirements on function definitions are even harder
nothing happens. It is therefore safe to always use thiso check. The documented semantic of a function must
macro to call symbols in dynamically loaded DSOs. Thenot change. Defining “semantic” for any non-trivial func-
DL CALL FCT macro has a low overhead and so could betion is not easy, though. In the next section we try to
used unconditionally but for production code it is proba-define the requirements of a stable interface. Basically
bly best to avoid it. stability means that correct programs which ran in the
past continue to run in the future. One of the require-
ments therefore is that the parameters of a function do not
change. This brings up an interesting point: in C++ this
»)] is ensured automatically. Functions incorporate in their
When writing DSOs which are used as resources in Muli3ngled names the parameter types. This means that any
tiple projects mastering the technical aspects of writingehange in the signature of a function will result in link-
optimized DSOs is only part of what is needed. Main-(ime and run-time errors and therefore can be detected
taining the programming interface (API) and the binary gagily. This is not the case for variables; their mangled
interface (ABI) play an even more important role in a suc-pames only contain the namespace part. Another good

cessful project. Without API and ABI stability the DSO a550n to not export variables as part of the API.
would be a burden to use or even unusable. In this sec-

tion we will introduce a number of rules which increase 3.2 Defining Stability

the chance of success for projects which provides inter-

faces for other projects. We are talking specifically about

library implementations in DSOs but most rules can beHaving said that stability of the ABI is the highest goal

3 Maintaining APIs and ABIs

transferred to projects of any kind. of DSO maintenance, it is now time to define what sta-
bility means. This might be surprising for some readers
3.1 What are APIs and ABIs? as a nave view of the problem might be that everything

which worked before has to continue working in the fu-
ture. Everybody who tried this before will see a problem
DSOs are used both at compile time and at run-time. Awith it.
compile time the linker tries to satisfy undefined refer-
ences from the definitions in the DSO. The linker thenRequiringeverything to continue to be possible in future
associates the reference with the definition in the DSO. Ineleases would mean that even programs, which use in-
ELF objects this reference is not explicitly present sinceterfaces in an undocumented way, have to be supported.
the symbol lookup allows finding different definitions at Almost all non-trivial function interfaces allow parame-
run-time. But the reference is marked to be satisfied. Aters to specify values which are outside the documented
run-time the program can rely on the fact that a defini-interface and most interfaces are influenced by side ef-
tion is present. If this would not be the case somethingects from other functions or previous calls. Requiring
changed in the DSO between the time of linking the ap-that such uses of an interface are possible in future revi-
plication and the time the application is executed. Asions means that not only the interface but also the im-
change in which a symbol vanishes is usually fatal. Inplementation is fixed.
some cases definitions in other DSOs can take over but
this is nothing which one can usually be depended onAs an example assume the implementation ofthek
A symbol once exported must be available at run-time infunction in the C run-time library. The standard requires
the future. that the first call ifstrtok gets passed a nawJLL first
parameter. But what happens if the first call hakal as
The ABI of the DSO comprises the collection of all the the first parameter? In this case the behavior is undefined
definitions which were available for use during the life- (not even implemented-defined in this case). Some im-

32 \ersion 3.0 How To Write Shared Libraries

plementations will in this case simply retuktuLL since But if a new application uses the new interface it will run
this a common side effect of a possible implementationinto problems if at runtime only the old version of the
But this is not guaranteed. The function call might asDSO, the one without the newly added symbol, is avail-
well cause the application to crash. Both are valid im-able. The user can detect this by forcing the dynamic
plementations but changing from one to the other in thdinker to perform all relocations at load-time by defin-
lifetime of a DSO would mean an incompatibility. ing LD_.BIND_NOWoO an nonempty value in the environ-
ment before starting the application. The dynamic linker
The question is: does this really constitute an incompatwill abort with an error if an old DSO is used. But forc-
ibility? No valid program would ever be affected. Only ing the relocations introduces major performance penal-
programs which are not following the documented inter-ties (which is the reason why lazy relocations were in-
face are affected. And if the change in the implementatroduced in the first place). Instead the dynamic linker
tion would mean an improvement in efficiency (accord-should detect the old DSO version without performing
ing to whatever measure) this would mean broken applithe relocations.
cations prevent progress in the implementation of a DSO.
This is not acceptable. 3.3 ABI Versioning

Stability therefore should be defined using tlieumented . o

interface. Legitimate uses of interfaces should not be af] he term “ABI versioning” refers to the process of asso-

fected by changes in the implementation; using interface§1ating an ABI with a specific version so that if necessary

in an undefined way void the warranty. The same is trud"0re than one version of the ABI can be present at any

for using completely undocumented, internal symbols.2N€e time. This is no new cor_1ce_pt but it was refined over

Those must not be used at all. While this definition of ime and not all possible versioning methods are available

stability is widely accepted it does not mean that avoid-On all systems.

ing or working around changes introduced by changes to i . .

the implementation is wrong. It just is not necessary if The first method is the oldest and coarsest grained one. It

the achievement of stability comes at a cost which almostS Implemented by using a different filename for each in-

always is the case. compatible DSO. In ELF binaries dependencies on DSOs
are recorded usin@T.NEEDEDentries in the dynamic

Rejecting stability of undefined functionality is one thing, S€9ment. The string associated with the entry has to be

but what happens if some documented behavior changed?€ Name of an existing DSO. Itis usually taken from the
This is can happen for various reasons: string associated with thBT_ SONAMENtry in the DSO.

Different names can point to different files which makes
coexistence of different DSOs possible and easy. But
e The implementation contains a bug. Other imple-while this method is easy to use and such DSOs can eas-
mentations produce different results and this is whaity be produced, it has a major drawback. For every re-
people interested in cross-platform compatibility leased version of the DSO which contains an incompati-
are interested in. The old, broken behavior mightble change the SONAME would have to be changed. This
be useful, too. can lead to large numbers of versions of the DSO which
each differ only slightly from each other. This wastes
resources especially at run-time when the running appli-
cation need more than one version of the DSO. Another
problem is the case when one single application loads
more than one version of the DSO. This is easily pos-

« Functionality of an interface gets extended or re-Sible if dependencies (other DSOs the application needs)
duced according to availability of underlying tech- Pull in independently these different versions. Since the
nology. For instance, the introduction of more ad- tWo versions of the versioned DSO do not know of each
vanced harddisk drives can handle requests whici9ther, the results can be catastrophic. The only safe way
previous versions cannot handle and these addil® handle versioning with filenames is to avoid the de-

tional requests can be exposed through function inScribed situation completely. This is most probably only
terfaces. possible by updating all binaries right away which means

that effectively no versioning happens. The main advan-
tage of filename versioning is that it works everywhere
Not making the changes can have negative results. Blindgnd can be used as a fallback solution in case no other
changing the code will definitely have negative results.versioning method is available.
Making the change and still maintaining ABI stability re-
quires the use of versioning. A second method with finer grained control was devel-
oped by Sun for its Solaris OS. In this method DSOs have
These incompatible changes to a DSO are not the onlynternal versioning methods (filename versioning is ob-
changes which can cause problems. Adding a new interviously available on top of them). The internal version-
face does not cause problems for existing applicationsing allows to make compatible changes to a DSO while

e Similarly, alignment with standards, revisions of
them, or existing practice in other implementations
can promise gains in the future and therefore mak
ing a change is useful.

Ulrich Drepper Version 3.0 33

avoiding runtime problems with programs running in en-consistent. Every versioned DSO has at most one version
vironments which have only the old version of the DSO of every API which can be used at link-time. An API
available. Compatible changes mean adding new intertnot ABI) can also vanish completely: this is a way to
faces or defining additional behavior for existing inter- deprecate APIs without affecting binary compatibility.
faces. Each symbol is associated with a version. The
versions in a file are described by a non-cyclical graphThe only real problem of this approach is that if more
which forms a hierarchy. If a symbol is associated with athan one version of the same APl is used in the same ap-
version which has a predecessor it means that the propeplication. This can only happen if the uses are in different
ties of the symbol associated with the predecessor versionbjects, DSOs or the application itself. From inside one
are also fulfilled in the successor version. In short; a newobject only one version can be accessed. In the last 8+
version is defined for a new release of a DSO wheneveyears this hasn't been found to be a problem in the GNU
new features are added. The interfaces which changea@ library development. If it becomes a problem it can po-
in a compatible way get the new version associated. Altentially be worked around by changing the implementa-
the other interfaces must not change and they keep thon of the multi-versioned interface to make it aware of
version they had in the previous release. it. Since both versions of the interface are implemented
in the same DSO the versions can coordinate. In general,
When the linker uses the versioned DSO to satisfy a demost of the implementation of the different versions is
pendency it also records the version of the used symbokhared and the actual versioned interfaces are normally
This way it gets for each DSO a list of required versions.wrappers around a general implementation (see below).
This list is recorded in the binary which is produced.
With this information available it is now easy for the dy- If possible, projects implementing generally usable DSOs
namic linker to determine at startup-time whether all theshould use symbol versioning from day one. Since the
interfaces the application needs are available in at leastame techniques are used for symbol export control this is
the version which was used at link-time. To do this theattractive. Unfortunately this versioning scheme requires
dynamic linker has to go through the list of all required changes in the dynamic linker which are currently only
versions and search in the list définedversions in the available on Linux and GNU Huff] If this is not possi-
referenced DSOs for a matching entry. If no matchingble use Sun’s internal versioning for compatible changes
entry is found the DSO used at runtime is incompatible(really only applies to Solaris). Otherwise there is no op-
and the program does not start up. tion but to change the SONAME for every release with
incompatible and possible even releases with compati-
It should be noted that the number of versions is muchble changes. But the fact that such limited systems ex-
lower than the number of symbols and generally inde-st shouldnevermake this the only implemented way: if
pendent of it. New versions are introduced only for up-better mechanisms are available they should be used.
dates of the DSO package or an OS release. Therefore
the version matching is a quick process. 3.4 Restricting Exports

While Sun’s extensions help to cope with parts of the

stability problem, the much larger problem remains toone of the reasons changes between revisions of a DSO
be solved: how to handle incompatible changes. Everyppear incompatible is that users use internal interfaces
non-trivial DSO will sooner or later in its lifetime require of the DSO. This should never happen and usually the
some incompatible changes. Even changes made to Cofficial interfaces are documented and the internal inter-
rect problems fall sometimes into this category. Somefaces have special names. Still, many users choose to
(broken) program might depend on the old method. Sqgnore these rules and then complain when internal inter-
far there is only one way out: change the SONAME. faces change or go away entirely. There is no justification
for these complaints but developers can save themselves

With Linux’s symbol versioning mechanism this is not g |ot of nerves by restricting the set of interfaces which
necessary. ABIs can normally be kept stable for as longyre exported from the DSO.

as wanted. The symbol versioning mechanism [4] is an

extension of Sun’s internal versioning mechanism. Thesectio{ 2.2 introduced the mechanisms available for this.
two main differences are: it is pOSSible to have more tharNOW that Symb0| Versioning has been introduced we can
one definition of a given Symbol (the associated Versiorbxtend this discussion a bit. Using Symbo' maps was in-
must differ) and the application or DSO linked with the troduced as one of the possibilities to restrict the exported
versioned DSO contains not only a list of the requiredsymbo|s_ Ideally symbol maps should be used all the
version, but also records for each symbol which sym-ime, in additionto the other method chosen. The rea-

bol version was used and from which DSO the definitionson s that this allows associating version names with the
came. At runtime this information can then be used tointerfaces which in turn later allow incompatible changes

pick the right version from all the different versions of to he made without breaking the ABI. The example map
the same interface. The only requirement is that the API

(headers, DSO used for linking, and documentation) is *'Apparently some of the BSD variants “borrowed” the symbol ver-
sioning design. They never told me though.

34 \ersion 3.0 How To Write Shared Libraries

file in sectio 2.26 does not define a version name, it ifunction is defined using the new semantic. Ee@rn

an anonymous version map. The version defining a verdeclaration following the function definition is in fact a
sion name would look like this: definition of an alias for the namiedex1 __. This is
gcc's syntax for expressing this. There are other ways
to express this but this one uses only C constructs which

VEFT(?Eallioirl{dex- are visible to the compiler. The reason for having this
I%cal' e ' alias definition can be found in the following two lines.

¥ These introduce the “magic” to define a versioned sym-
bol with more than one definition. The assembler pseudo-
op.symver is used to define an alias of a symbol which
consists of the official nameéor @ @nd a version name.

In this example/ERS1.0 is an arbitrarily chosen version The alias name will be the name used to access the sym-

name. As far as the static and dynamic linker are conbol. It has to be the same name used in the original code,

cerned version names are simply strings. But for mainteindex in this case. The version name must correspond

nance purposes it is advised that the names are chosenttwthe name used in the map file (see the example in the

include the package name and a version number. For thegrevious section).

GNU C library project, for instance, the chosen names

areGLIBC 2.0 ,GLIBC 2.1 , etc. What remains to be explained is the useggind @ @The
_ _ symbol defined usingd@s the default definition. There
3.5 Handling Compatible Changes (GNU) must be at most one. It is the version of the symbol used

in all linker runs involving the DSO. No symbol defined
using @are ever considered by the linker. These are the

The two basic compatible changes, extending functionalcompatibility symbols which are considered only by the
ity of an existing interface and introducing a new inter- gynamic linker.

face, can be handled similarly but not exactly the same

way. And we need slightly different code to handle the|n this example we define both versions of the symbol to
Linux/Hurd and the Solaris way. To exemplify the changegse the same code. We could have just as well kept the
we extend the example in section]2.2. Thgex func- old definition of the function and added the new defini-
tion as defined cannot handle negative parameters. A vefion, This would have increased the code size but would
sion with this deficiency fixed can handle everything theprovide exactly the same interface. Code which calls the
old implementation can handle but not vice versa. Therep|d versionjndex@VERS.1.0 , would have produced un-
fore applications using the new interface should be prespecified behavior with the old DSO and now it would re-
vented from running if only the old DSO is available. As tyrn the same as a call todex@ @VERS2.0 . But since

a second change assume that a new fundtidexpl is such a call is invalid anyway nobody can expect that the
defined. The code would now look like this when using AB| does not change in this regard.

Linux/Hurd:

Since this code introduced a new version name the map

S T e file has to change, too.

static int next (void) { VERS_1.0 {
return ++last; glol;aI: index:
} local: *;
int index1__ (int scale) { b
return next () << (scale>0 ? scale : 0); VERS_2.0 {
} L . gIoEaI: index; indexpl;
extern int index2__ (int) } VERS_1.0;

__attribute ((alias (“index1__")));
asm(".symver indexl__,index@VERS_1.0");
asm(".symver index2__,index@@VERS_2.0");

. . The important points to note here are tmaex is men-

int '"deXp.l Uit €1E) o tioned in more than one versioindexpl only appears
return index2__ (scale) + 1; . — .

} in VERS2.0 , thelocal: definitions only appear in the
VERS1.0 definition, and the definition 6fERS2.0 refers
to VERS1.0 . The first point should be obvious: we want
two versions ofindex to be available, this is what the

Several things need explaining here. First, we do not exsource code says. The second point is also easy to under-

plicitly define a functiorindex anymore. Insteaidex1l __ stand:indexpl is a new function and was not available

is defined (note the trailing underscore characters; leadwvhen version 1 of the DSO was released. It is not nec-
ing underscores are reserved for the implementation). Théssary to mark the definition afdexpl in the sources

Ulrich Drepper Version 3.0 35

with a version name. Since there is only one definitior
the linker is able to figure this out by itself. VERS_1.0 {

local: *;
The omission of the catch-abcal: * case might be 'k
a bit surprising. There is nbcal: case at all in the VERS20 {
VERS2.0 definition. What about internal symbols in- _ 9loPal: index; indexpl;
troduced in version 2 of the DSO? To understand this i} HIEIREILO,
must be noted that all symbols matched in kbel:
part of the version definition do not actually get a version
name assigned. They get a special internal version na
representing all local symbols assigned. So,dhel:
part could appear anywhere, the result would be the sam
Duplicatinglocal: * could possibly confuse the linker
since now there are two catch-all cases. It is no proble

to explicitly mention newly introduced local symbols in move would be done theERS1.0 definition must be

;hee;g;:;r sciﬁcs::ihoefrre]e;}/vyaer?gk?zhItzju:):et :’Q;{L?ﬂh’g’stekept around since this version is named as the predeces-
y Y sor of VERS2.0 . If the predecessor reference would be
removed as well, programs linked against the old DSO

and referencingndex in versionVERS1.0 would stop

Mfhe change consists of removing tindex entry from
versionVERS1.0 and adding itt&/ERS2.0 . This leaves
%o exported symbol in versiodERS1.0 which is OK.
It would be wrong to remov&®ERS1.0 altogether after
Iﬁ?noving thelocal: * case toVERS2.0 . Even if the

The fourth point, theVERS1.0 version being referred
toin theVER.SZ.'O definition, is not really |mportar_1t In .working. Just like symbols, version names must never be
symbol versioning. It marks the predecessor relat'onSh'Qemoved
of the two versions and it is done to maintain the similar- '
ities with Solaris’ internal versioning. It does not CaUSe 11 . ode in this section has one little problem the code

any problem it might in fact be useful to a human readerfor the GNU versioning model in the previous section
so predecessors should always be mentioned.

does not have: the implementation iaflexpl refer-
ences the public symbaildex and therefore calls it with
3.6 Handling Compatible Changes (Solaris) a jump to the PLT (which is slower and possibly allows
interposition). The solution for this is left as an exercise
to the user (see sectipn 2.7).
The code changes to the code of the last section to handle
Solaris’ internal versioning simplify sources and the mapThe Solaris runtime linker uses the predecessor imple-
file. Since there can only be one definition of a symbolmentation to determine when it finds an interface not avail-
(and since a symbol cannot be removed there is exactigble with the version found at link-time. If a applica-
one definition) we do not need any alias and we do notion was linked with the old DSO constructed from the
have to mentiorindex twice in the map file. The source code above it would referentedex@VERS.1.0 . If the
code would look like this: new DSO is found at runtime the version found would
beindex@VERS.2.0 . In case such a mismatch is found
the dynamic linker looks into the list of symbols and tries

static int last; all predecessors in turn until all are checked or a match
is found. In our example the predecessoiv&RS2.0
static int next (void) { is VERS1.0 and therefore the second comparison will
return ++last; succeed.
}

s , 3.7 Incompatible Changes
int index (int scale) {

return next () << (scale>0 ? scale : 0);

) Incompatible changes can only be handled with the sym-
int indexpl (int scale) { bol versioning mechanism present on Linux and GNU

return index (scale) + 1; Hurd. For Solaris one has to fall back to the filename
} versioning method.

Having just covered the code for the compatible change,
the differences are not big. For illustration we pick up the
Note that this only works because the previously definec@xample code once again. This time, instead of making a
semantics of thindex function is preserved in the new compatible change to the semanticsmaex we change
implementation. If this would not be the case this changehe interface.
would not qualify as compatible and the whole discussion

would be moot. The equally simplified map file looks like -
this: static int last;

36 \ersion 3.0 How To Write Shared Libraries

ample, it is no problem at all if different parts of the pro-
gram call different versions of thedex interface. The
only requirement is that the interface the caller saw at

static int next (void) {
return ++last;

} compile time, also is the interface the linker finds when
int index1__ (int scale) { handling the relocatable object file. Since the relocatable
return next () << scale; object file doesnot contain the versioning information
} it is not possible to keep object files around and hope

asm(".symver indexl__,index@VERS_1.0"); the right interface is picked by the linker. Symbol ver-
sioning only works for DSOs and executables. If it is
int index2__ (int scale, int *result) { necessary to reuse relocatable object files later, it is nec-
if (result < O _ . essary to recreate the link environment the linker would
Il resu.lt >= 8 * sizeof (int)) have seen when the code was compiled. The header files
*re;eutll:”l -i%l'dex L (e (for C, and whatever other interface specificatiqn _exists
return O: — ' for other languages) and the DSOs as used by linking to-
} ' gether form the API. Itis not possible to separate the two
asm(".symver index2__,index@ @VERS_2.0"): steps, compiling and linking. For this reason packaging

systems, which distinguish between runtime and devel-
opment packages, put the headers and linkable DSOs in
one file, while the files needed at runtime are in another.

The interface ofndex in versionVERS2.0 as imple-

mented inindex2 __ (note: this is the default version as 3.8 Using Versioned DSOs

can be seen by the tw@in the version definition) is quite

different and it can easily be seen that programs which

previously return some more or less sensible value nowMll methods which depend on symbol versioning have
can crash becausesult is written to. This parameter ON€ requirement in common: it is absolutely necessary
would contain garbage if the function would be used with O the users of the DSO to always link with it. This might
an old prototype. Thindex1 __ definition is the same as sound like a strange requirement but it actually is not
the previousndex implementation. We once again have since it is not necessary to provide definitions for all ref-
to define the real function with an alias since thgex erences when crea}ting DSOs. le., thg Iinkgr is perfectly
names get introduced by theymver pseudo-ops. happy if a symbol is completely undefined in a DSO. It
is only the dynamic linker which would complain: if no
It is characteristic for incompatible changes that the im-CPJectis in scope which defines the undefined symbol the

plementations of the different versions require separaté®Kup fails.
code. But as in this case one function can often be imple-

mented in terms of the other (the new code using the old NS Method is sometimes, rarely, a useful method. If a
code as it is the case here, or vice versa). DSO is behaving differently depending on the context it

is loaded in and if the context has to provide some call-
The map file for this example looks very much like the Packs which make the DSO complete, using undefined
one for the compatible change: symbols is OK. But this does not extend to definitions
from DSOs which use symbol versioning.

VERS_1.0 { The problem is that unless the DSO containing the defi-
global: index; nitions is used at link time, the linker cannot add a ver-
local: *; sion name to the undefined reference. Following the rules

t for symbol versioning [4] this means the earliest version

VERS_ 2.0 { available at runtime is used which usually is not the in-

global: index: tended version. Going back to the example in se¢fion 3.7,

} VERS_1.0; assume the program using the DSO would be compiled
expecting the new interfadedex2 __. Linking happens
without the DSO, which contains the definition. The ref-
erence will be foindex and notindex@@VERS2.0 . At

We have two definitions afidex and therefore the name runtime the dynamic linker will find an unversioned ref-

must be mentioned by the appropriate sections for the twerence and versioned definitions. It will then select the

versions. oldest definition which happens to bbelex1 __. The re-
sult can be catastrophic.

It might also be worthwhile pointing out once again that

the call toindex1 __in index2 __ does not use the PLT It is therefore highly recommended to never depend on

and is instead a direct, usually PC-relative, jump. undefined symbols. The linker can help to ensure this if
-WI,-z,defs is added to compiler command line. If it

With a simple function definition, like the one in this ex- is really necessary to use undefined symbols the newly

Ulrich Drepper Version 3.0 37

built DSO should be examined to make sure that all ref-This will add the two named directories to the run path
erences to symbols in versioned DSOs are appropriatelin the order in which say appear on the command line. If

marked. more than onerpath /-R option is given the parameters
. . . will be concatenated with a separating colon. The order
3.9 Inter-Object File Relations is once again the same as on the linker command line.

For compatibility reasons with older version of the linker
))) DT_RPATHentries are created by default. The linker op-
Part of the ABI is also the relationship between the var-jo, —-enable-new-dtags must be used to also add
lous participating executables and DSOs which are crept rynpATHentry. This will cause bottDT RPATHand
ated by undefined references. It must be ensured th‘"ﬁT,RUNPATI-entries, to be created.
the dynamic linker can locate exactly the right DSOs at

program start time. The static linker uses the SONAMEThere are a number of pitfalls one has to be aware of
of a DSO in the record to specify the interdependenciegynen using run paths. The first is that an empty path
between two objects. The information is stored in thergpresents the current working directory (CWD) of the
DT.NEEDEDentries in the dynamic section of the object yrocess at runtime. One can construct such an empty path
with the undefined references. Usually this is only a flleby explicitly adding such a parameten(,-R,™) but
name, without a complete path. Itis then the task of theyiso and this is the dangerous part, by two consecutive
dynamic linker to find the correct file at startup time. colons or a colon at the beginning or end of the string.

. _ That means the run path value ":/home::/usr:” searches
This can be a problem, though. By default the dynamicihe c\WD, home, the CWD againpsr , and finally the

linker only looks into a few directories to find DSOs (on c\wp agairﬁ Itis very easy to add such an empty path.
Linux, in exactly two directorieg)ib and/usr/lib). Makefiles often contain something like this:
More directories can be added by naming them in the

letc/ld.so.conf file which is always consulted by

the dynamic linker. Before starting the application, the RPATH = $(GLOBAL\ RPATH):$(LOCAL\ RPATH)
user can add.D_LIBRARY_PATHto the environment of LDFLAGS += -WI,-rpath,$(RPATH)

the process. The value is another list of directories whic

are looked at.

But all this means that the selection of the directories idlf €ither GLOBALRPATHoOr LOCALRPATHis empty the
under the control of the administrator. The program’s au-dynamic linker will be forced to look in the CWD. When
thor can influence these setting only indirectly by doc-constructing strings one must therefore always be careful

umenting the needs. But there is also way for the proPout empty strings.

grammer to decide the path directly. This is sometimes)) .
important. The system'’s setting might not be usable byThe second issue run paths have is that either that paths
all programs at the same time. like /usr/lib/someapp are not “relocatable”. l.e., the

package cannot be installed in another place by the user

For each object, DSO as well as executable, the authgpithout playing tricks like creati_ng symbolic links from
can define a “run path”. The dynamic linker will use the /usr/lib/someapp tothe real directory. The use of rel-
value of the path string when searching for dependenciedtivé paths is possible, but highly discouraged. It might
of the object the run path is defined in. Run paths come$€ OK in application which always control their CWD,
is two variants, of which one is deprecated. The runpath®ut in DSOs which are used in more than one application
are accessible through entries in the dynamic section a4Sing relative paths means calling for trouble since the
field with the tagsDT.RPATHandDT.RUNPATHThe dif- application can change the CWD.

ference between the two value is when during the search))))

for dependencies they are used. THERPATHvalue is A solution out of the dilemma is an extension syntax for
used first, before any other path, specifically before theédll search paths (run paths, but albLIBRARY.PATH.
path defined in theD_LIBRARY_PATHenvironment vari- |f One uses the strinGORIGIN this will represent the ab-
able. This is problematic since it does not allow the useS0lute path of the directory the file containing this run
to overwrite the value. ThereforeT.RPATHis depre- Path is in. One common case for using this “dynamic
cated. The introduction of the new variabi RUNPATH String token” (DST) is a program (usually installed in a
corrects this oversight by requiring the value is used aftePin/ directory) which comes with one or more DSOs it

the path inLD_LIBRARY_PATH needs, which are installed in the correspondilg di-
rectory. For instance the paths could/bia and/lib
If both a DT.RPATHand aDT,RUNPATl'Entry are avail- or /usr/bin and /ustr/lib . In such a case the run

able, the former is ignored. To add a string to the runPath of the application could conta#ORIGIN/./ib
path one must use thepath or -R for the linker. l.e., Which will expand in the examples case just mentioned

on the gcc command line one must use something like to /bin/../lib and /ust/bin/../lib respectively.
12The dynamic linker is of course free to avoid the triple search since
gcc -WI,-rpath,/some/dir:/dir2 file.o after the first one it knows the resuilt.

38 \ersion 3.0 How To Write Shared Libraries

The effective path will therefore point to the appropriate programmer can still name all the DSOs which might be
lib/ directory. needed at all times. The linker does all the hard work.

$ORIGIN is not the only DST available. The GNU libc This process should not be executed mindlessly, though.
dynamic currently recognizes two more. The firsilits Not having the DSO on the direct dependency list any-
which is useful on platforms which can run in 32- and 64-more means the symbol lookup path is altered. If the
bit mode (maybe more in future). On such platforms theDSO in question contains a definition of a symbol which
replacement value in 32-bit binarieslis and for 64- also appears in a second DSO and now that second DSO
bit binaries it islib64 . This is what the system ABIs is earlier in the lookup path, the program’s semantics
specify as the directories for executable code. If the platmight be altered. This is a rare occurrence, though.

form does not know more than one mode the replacement

value islib . This DST makes it therefore easy to write

Makefiles creating the binaries since no knowledge about

the differentiation is needed.

The last DST isSPLATFORM It is replaced by the dy-
namic linker with an architecture-specific string repre-
senting the name of the platform (as the name suggests).
For instance, it will be replaced witl386 ori686 on
IA-32 machines, depending on the CPU(s) used. This al-
lows using better optimized versions of a DSO if the CPU
supports it. On system with the GNU libc this is gener-
ally not needed since the dynamic linker by itself and by
default looks for such subdirectories. The actual rules are
guite complicated and not further discussed here. What
is important to remember is that t8€ LATFORMDST is

not really useful; it is mainly available for compatibility
with Solaris’s dynamic linker.

Another aspect oDT_NEEDEDentries worth looking at

is whether they are necessary in the first place. Espe-
cially when the above guideline of using the defs

linker option is followed, many projects name all kinds of
DSOs on the linker command line, whether they are re-
ally needed or not in the specific case. This problem is in-
tensified with useless wrappers likkg-config ~ which

just add tons of dependencies to the link time. This might
have been OK in the days of static linking, but the de-
fault for DSOs appearing on the linker command line
is, that they are always added to the result’s dependency
list, whether they are actually used or not. To determine
whether an executable or DSO has such unnecessary de-
pendencies thield script can be used:

$ Idd -u -r \
Jusr/lib/libgtk-x11-2.0.50.0.600.0
Unused direct dependencies:

lusr/lib/libpangox-1.0.s0.0
/lib/libdl.so.2

These references can be manually eliminated by avoiding
to name the DSO on the linker command line. Alterna-
tively the --as-needed linker option can be used. If
this option is used, all DSOs named on the command line
after the option are only added to the dependency list if
they are really needed. This mode can be disabled again
with the --no-as-needed option. This way the lazy

Ulrich Drepper Version 3.0 39

A Counting Relocations

The following script computes the number of normal and relative relocations as well as the number of PLT entries
present in a binary. If an appropriateadelf implementation is used it can also be used to look at all files in an
archive. Ifprelink [7] is available and used, the script also tries to provide information about how often the DSO is
used. This gives the user some idea how much “damage” an ill-written DSO causes.

#1 lusr/bin/perl
eval "exec /usr/bin/perl -S $0 $*"
if O;

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>, 2000.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
for ($cnt = 0; $cnt <= $#ARGV; ++$cnt) {

$relent = O;

$relsz = 0;

$relcount = 0;

$plirelsz = 0;

$extplt = 0;

$users = 0;

open (READLINK, "readlink -f $ARGV[$cnt] [") || die "cannot open readlink";

while (SREADLINK>) {

chop;
$fullpath = $_;
}

close (READLINK);

open (READELF, "eu-readelf -d $ARGV[$cnt] [*) || die "cannot open $ARGV[$cnt]";
while (<READELF>) {
chop;
if (/.* (RELENT\) *([0-9]%).*/) {
$relent = $1 + O;
} elsif (/.* \(RELSZ\) *([0-9]*).*/) {
$relsz = $1 + 0;
} elsif (/.* (RELCOUNT\) *([0-9]%).*/) {
$relcount = $1 + O;
} elsif (/.* \(PLTRELSZ\) *([0-9]%).*)) {
$pltrelsz = $1 + 0O;
}
}
close (READELF);
open (READELF, "eu-readelf -r $ARGV[$cnt] |*) || die "cannot open $ARGV[$cnt]";
while (<READELF>) {
chop;
if (/.*JU?MP_SLOT *0+ .*/) {
++$extplt;
}
}

40 \ersion 3.0 How To Write Shared Libraries

Ulrich Drepper Version 3.0 41

B Automatic Handler of Arrays of String Pointers

The method to handle arrays of string pointers presented in s¢ctioh 2.4.3 show the principle method to construct data
structures which do not require relocations. But the construction is awkward and error-prone. Duplicating the strings
in multiple places in the sources always has the problem of keeping them in sync.

Bruno Haiblé suggested something like the following to automatically generate the tables. The programmer only has
to add the strings, appropriately marked, to a data file which is used in the compilation. The framework in the actual
sources looks like this:

#include <stddef.h>

#define MSGSTRFIELD(line) MSGSTRFIELD1(line)
#define MSGSTRFIELD1(line) str##line
static const union msgstr_t {
struct {
#define _S(n, s) char MSGSTRFIELD(__LINE_)[sizeof(s)];
#include "stringtab.h"
#undef _S
ji
char str[0];
} msgstr = { {
#define _S(n, s) s,
#include "stringtab.h"
#undef _S

}h

static const unsigned int msgidx[] = {

#define _S(n, s) [n] = offsetof(union msgstr_t, MSGSTRFIELD(__LINE_)),
#include "stringtab.h"

#undef _S

k

const char *errstr (int nr) {
return msgstr.str + msgidx[nr];

}

The string data has to be provided in the fitengtab.h . For the example from secti¢n 2.4.3 the data would look
like this:

_S(ERR1, "message for errl")
_S(ERR3, "message for err3")
_S(ERR2, "message for err2")

The macro.S takes two parameters: the first is the index used to locate the string and the second is the string itself.
The order in which the strings are provided is not important. The value of the first parameter is used to place the offset
in the correct slot of the array. It is worthwhile running these sources through the preprocessor to see the results. This
way of handling string arrays has the clear advantage that strings have to be specified only in one place and that the
order they are specified in is not important. Both these issues can otherwise easily lead to very hard to find bugs.

The arraymsgidx in this cases uses the typasigned int which is in most cases 32 bits wide. This is usually far
too much to address all bytes in the string collectiongystr . So, if size is an issue the type used couldiipel6 _t
or evenuint8 _t.

Note that both arrays are marked wittnst and therefore are not only stored in the read-only data segment and there-
fore shared between processes, preserving, precious data memory, making the data read-only also prevents possible
security problems resulting from overwriting values which can trick the program into doing something harmful.

42 \ersion 3.0 How To Write Shared Libraries

mailto:bruno@clisp.org

C Index

defaultsymbol,.............................. [-135
~as-needer ,......iiiiiiieiii i B9 defaultvisibility,co.oo.... [1.
-no-as-needed ... [.B9 deStruCtOr, ...\ttt 11
~shared2 DFEBINDNOW. .+ ettt e e e e e e e [15
--version-script P RRREEE: 21 DEDYNAMIG .+« v v e e eeee e e e e e .9
FNO-COMMON |+ v vttt [Tk, DESYMBOLIG « + o e v e eveeee e 1B, 18,24
Apic [LJOJ13 DETEXTRELovoeieieiiiii e .5
Avisibility L L7 DLCALLFCT, + vt tteeeeeeee et eeeeans Bl
-Hvisibility-inlines-hidden e [0) BRI 10131
APAh L L38 disym0 L. [[131
Zdefs i [.H7.]39 documented interface,....................... [].33
ZNOW 1.t UBEBL DSO,..oii 0.1
ZTEITO e B0 psT . 138
SYMVET e [35f. DT FLAGS « + vttt ettt et [1.5,]24
@GOT. ..o [LMO0.JT6]21 Oy NEEDED.o [1B, B3, 38f.
@GOTORE .. .cvvvvvvviee e [LIB.JTI29 oy RpATH. oo]38
@PLT. .o L0016 D RUNPATH. ..o [.138
0] = S [T]39 DTSONAME. -+« v v oo 33
SORIGIN, .« ottt e et et [T]38 DTSYMBOLIG « + v v oo 1B R4
SPLATFORM. .. LB DrrexTREL .o [.5
dynamiclinker,.............l 4
ABI,. ...ttt I3 e e obiee : E‘?]
VEISIONING, ..o [133 4Vnamic string token]38
absolute address,covviiiii i 1. 27 y 9 Ty
ACCESS PEIMISSION, ..ttt eeie i []..4
Adanames, ... [..7 ELF,... Loty .2
dding symbols. ...] 33 Ntry POINt, [].4
a exception handling,oo.t, [..] 20
address SPace,o i []..2 executable linkage format 5
aliases, 2123, 35 9 Ty "

. . EXECOVE() ;e ettt it e [].2
alternative entry point, []22 20
anonymous versionmap,, [[].34 BXPOTEIMAD, . v []
Zglln TTrirrrrirrnrnnna |:| %]\;;4 file-local scope,...............oooiiii [16
aux{"'a{r'y'{,é&& ... 0. 4 filename versioning, %1313

’ P
binary format,c.c.oeiiiiiiiiiiiiin. .1 functionamay,............................... []27
BSS SECHON, ..ot [J.3 functionattribute,....................oeee. [.]11

function semantics, ... [] 32

C++

ClasseS, ________________________________ D 18 gABI, .. D 2

NAMES, . o v oo e e []1.7 globaloffsettable,........................... [-]10

BYPEINTO) ettt e I:IZO GNU, . l:|20

virtual function table, [[]28 Versioning, [35f,
chainlength,oo.... [1.7 GOT..ooooi [.110] 30
class visibility,coouiiiiiii. []20 attacking, ... [[]30
code generation,cooiiiiiiiiin.. [].29 gprof ... []31
COFF, .t 0.1
commonvariable,............. . . E 14 hashchain,............coiiiii .. D .6
compatibility,cooeri []32 hidden visibility, [TJ7f.
compatibility symbol,oi... [[]35 Hurd,o [T 34f.
compatible changes, [][33,35
computed goto,o e []27 JA32,.....ooi [.10f., 1B. 16, 29%.]32
constantdata,iiiii... El@, 31 IA-B4, . . ng
CONSEIUCTON, .+ .\ttt e e [.}11 implementation-defined behavior, [.] 32
copy relocation,cociiiiiiii... [-]32 incompatible changes,| [..][34, 36
cost of relocations, [..5 dnit oo []11

initialized variable, [[]15

deepbinding,.............. ... []..9 interposition,.......................l [1[6]10
Ulrich Drepper Version 3.0 43

lazy relocation, [112[5] 30

LDBIND NOW. .+« vt eeeeeeeeaeeeaaenns [1B.B3
1T [139
LDDEBUG. + + v vttt et eeeeie i [1.[8,]13
LDLIBRARY PATH .+t tvtteeeeeeeeeieieieen [-B8
LD-PRELOAD. « vt e ettt ettt ie et [].6
LD-PROFILE, .« vt vtet it iee i [CP4131
libtool, [1[2]22
LiNUX, .« oeeeee e CAf 7, 1L, BT, 34738
load address,o.ovv v [1ff.
[0OKUP PrOCESS, .« o\ vv vt v i en []..5
lookup scope, ... [}[P. 8
member function, L []18
MEMOIY PAJE, « .+ttt ettt et eie e, []..3
memory protection, []Bf] 30
(101227 T 1 [].2
MPFOECH))« e e et e e e e et [RO
name mangling, M7 B1,R3f.
non-lazy relocation, [} 30
objectfile, ... [[]37
OpenOffice.org,ccoviiiiii ... []1.8
overhead, ..o [29
PC-relative, ..o, [T]16] BT} 29
PICregister,ooii. [. 1[0} 29
PIE, . e 0231
=T [-]10
attacking, ... [-]30
POINLEr AITAY, . . o e et e e i iee e [-]26
position independent executable, [1[.2 31
pragma visibility, [T)47]20
pre-linking, ... [] 4
procedure linkage table, [[].10
profiling,o [[]31
program header, ..., []..3
PSABL, ... []. @ 11
PT.GNURELRQ . .« et etetetieaeeeeeieieieene
o 1N = |:| 4
1 Y o [13f.
read-only memory, ..., [1[5] 25
relative address,cooo i, [[]. 28
relative relocation,......................... [1[5] 28
=) 1711 T I:|13
relocatable binary, [.] 38
relocatable objectfile,.......................] [[1] 37
relocation, ...t .1
COUNEING, « ottt e e e i e s [.]40
RTLDDEEPBIND .« -+« v eteoeeeeeeeaeaeieaeaeenns 9
RTLD.GLOBAL . .+« t ettt eteeeeeeieeeeeienees]9
runpath, ... [.]138
scope, lookup, []..5
SECUNtY, ..o [.]LT] 30
Security Enhanced Linux, [-]31
SEOMENT, ...\t []..3
SELINUX, .ottt []31
shared library,o [].1

shared objectname, [-].31
SHEMERGE. « « v vt vttt et eee e i aene s [125
SHESTRINGS + «+ v vttt eeeieie e aaenens [P5
Solaris, ... [T]20] B3}-36
SONAME, ..o [[.BT,33fF,38
SPIOT ettt e e []31
stable interface,................cooiiiiiiian [].32
Startup COSES,ovvovi i [].11
static linking, ... [l.2
STVHIDDEN « + + vt vt et et e eeeieeieeeeaennens 7
string definitions, oL [.]125
STVDEFAULT .. ettt ee et eeieieeeieieaes [Ln7
successful lookup, ... []..7
L3101 2)27
symbolalias,ooo [-]23
symbol export, ... [.1[5] 34
symbolreference,..................ocii.. [[].32
symbol relocation, [1[5] 28
symbol versioning,oo [33f.
symbol visibility, [.n5
text relocation,][5, 1% p9] 31
textsegment, ... []..5
undefined behavior, [[].32
undefined symbol, []37
uninitialized variable, []14
unsuccessful lookup,o .7
VETSIONING, ..ot [-133
wrapper function, [-]122
WIIEE @CCESS, + vttt vt e iaiees] [1]. 30
XBB-B4, . .\ [20f.

44 Version 3.0

How To Write Shared Libraries

D References

[1] System V Application Binary Interface, |http://www.caldera.com/developers/gabi/, 2001.

[2] Ulrich Drepper, Red Hat, IncELF Handling For Thread-Local Storage, http://people.redhat.com/drepper/tls|pdf,
2003.

[3] Ulrich Drepper, Red Hat, IncGood Practices in Library Design, Implementation, and Maintenance,
http://people.redhat.com/drepper/goodpractices.pdf, 2002.

[4] Ulrich Drepper, Red Hat, InCELF Symbol Versioning, http://people.redhat.com/drepper/symbol-versigning, 1999.
[5] Sun Microsystemd.,inker and Library Guide, http://docs.sun.com/db/doc/816-1386, 2002.

[6] TIS Committee Executable and Linking Format (ELF) Specification, Version 1.2,
http://x86.ddj.com/ftp/manuals/tools/elf.pdf, 1995.

[7] Jakub Jelinek, Red Hat, In@relink, http://people.redhat.com/jakub/prelink.pdf, 2003.

[8] Security Enhanced Linux http://www.nsa.gov/selinux/.

E Revision History

2002-11-2First public draft.

2002-11-8Fixed a couple of typos.
Document one more possibility for handling arrays of string pointers.
Describe PLT on 1A-32 in more details.

2002-11-14Document implications of using C++ virtual functions.

2003-1-20Incorporate several suggestions by Bruno Haible.
Describe visibility attribute and aliasing in C++ code.

2003-2-9 Some more cleanups. Version 1.0 release.

2003-2-27 Minor language cleanup. Describe using export maps with C++. Version 1.1.

2003-3-18 Some more linguistic changes. Version 1.2.

2003-4-4 Document how to write constructor/destructors. Version 1.3.

2003-12-8 Describe how to use run paths. Version 1.4.

2003-12-9 Add section about avoided PIC reload. Version 1.5.

2004-2-4 Fix some typos. Explain optimizations gcc does withdpit . Explain-z relro . Version 1.7.
2004-2-8 Introduce the lookup scope in more details. Version 1.9.

2004-8-4 Warn about aliases of static objects. Significant change to s¢ctipn 2.2 to introduce new features of gcc 4.0.
Version 1.99.

2004-8-27 Update code in appendices A and B. Version 2.0.
2004-9-23 DocumentRTLD.DEEPBINDandsprof . \ersion 2.2.

2005-1-22 Brushed up language in many places. Add Index. Version 3.0.

Ulrich Drepper Version 3.0 45

http://www.caldera.com/developers/gabi/
http://people.redhat.com/drepper/tls.pdf
http://people.redhat.com/drepper/goodpractices.pdf
http://people.redhat.com/drepper/symbol-versioning
http://docs.sun.com/db/doc/816-1386
http://x86.ddj.com/ftp/manuals/tools/elf.pdf
http://people.redhat.com/jakub/prelink.pdf
http://www.nsa.gov/selinux/
mailto:bruno@clisp.org

	1 Preface
	1.1 A Little Bit of History
	1.2 The Move To ELF
	1.3 How Is ELF Implemented?
	1.4 Startup: In The Kernel
	1.5 Startup in the Dynamic Linker
	1.5.1 The Relocation Process
	1.5.2 Symbol Relocations
	1.5.3 Lookup Scope
	1.5.4 GOT and PLT
	1.5.5 Running the Constructors

	1.6 Summary of the Costs of ELF
	1.7 Measuring ld.so Performance

	2 Optimizations for DSOs
	2.1 Data Definitions
	2.2 Export Control
	2.2.1 Use static
	2.2.2 Define Global Visibility
	2.2.3 Define Per-Symbol Visibility
	2.2.4 Define Visibility for C++ Classes
	2.2.5 Use Export Maps
	2.2.6 Libtool's -export-symbols
	2.2.7 Avoid Using Exported Symbols

	2.3 Shortening Symbol Names
	2.4 Choosing the Right Type
	2.4.1 Pointers vs. Arrays
	2.4.2 Forever const
	2.4.3 Arrays of Data Pointers
	2.4.4 Arrays of Function Pointers
	2.4.5 C++ Virtual Function Tables

	2.5 Improving Generated Code
	2.6 Increasing Security
	2.7 Simple Profiling of Interface Usage

	3 Maintaining APIs and ABIs
	3.1 What are APIs and ABIs?
	3.2 Defining Stability
	3.3 ABI Versioning
	3.4 Restricting Exports
	3.5 Handling Compatible Changes (GNU)
	3.6 Handling Compatible Changes (Solaris)
	3.7 Incompatible Changes
	3.8 Using Versioned DSOs
	3.9 Inter-Object File Relations

	A Counting Relocations
	B Automatic Handler of Arrays of String Pointers
	C Index
	D References
	E Revision History

